Discussion 20 Worksheet Answers
 More Stokes and Divergence

Date: 12/1/2021
MATH 53 Multivariable Calculus

1 Archimedes' Principle

The Force exerted on a solid D with surface S fully submerged in water is given by

$$
\mathbf{F}=\iint_{S}-p \hat{\mathbf{n}} d S
$$

where the pressure p is given by $-\rho g z$ (ρ is the density of water and g the gravitational acceleration) if we assume that the surface of the water is at $z=0$. Use the divergence theorem to show Archimedes' principle $\vec{F}=\rho g \operatorname{vol}(D)$.
Hint: Compute $\mathbf{F} \cdot \mathbf{i}, \mathbf{F} \cdot \mathbf{j}, \mathbf{F} \cdot \mathbf{k}$

2 identities

Prove each of these identities, assuming that D is a solid region in 3D space and $S=\partial D$.
(i) $\iint_{S} \mathbf{a} \cdot \mathbf{n} d S=0$ where \mathbf{a} is any constant vector.

Solution: This follows from the divergence theorem because $\nabla \cdot \mathbf{a}=0$.
(ii) $\operatorname{Vol}(D)=\frac{1}{3} \iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=(x, y, z)$

Solution: Also follows from the divergence theorem because $\nabla \cdot \mathbf{F}=3$.
(iii) $\iint_{S}(f \nabla g) \cdot d \mathbf{S}=\iiint_{D} f \nabla^{2} g+\nabla f \cdot \nabla g d V$

Solution: Since $\nabla \cdot(f \nabla g)=\nabla f \cdot \nabla g+f \nabla^{2} g$ so the divergence theorem fives us this identity.

3 parametrizing surfaces

Parametrize the following surfaces
(a) $x^{2}+y^{2}+1=z^{2} \quad$ (Hint: graph)
(b) $x^{2}+y^{2}=z^{2} \quad$ (try spherical coordinates)
(c) $x^{2}+y^{2}=\left(1+z^{2}\right)^{2} \quad$ (Hint: cylindrical coordinates)
(d) $y^{2}+z^{2}=e^{x}$
(e) $e^{x}=1+y^{2}+2 \cos ^{2} z$
(f) $\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}=2 x^{2}+2 y^{2}+z^{2}$
(g) $x \sin z=y \cos z$

4 Stokes / surface integrals

1. Compute $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}=\left(x^{2}, 2 z,-3 y\right)$ and S is the portion of $y^{2}+z^{2}=4$ between $x=0$ and $x=3-z$.
2. Compute $\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{S}$ where $\vec{F}=\left(y,-x, y x^{3}\right)$ and S is the portion of the sphere of radius 4 with $z \geq 0$ and the upwards orientation.
3. Compute $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}=\left(\sin (\pi x), z y^{3}, z^{2}+4 x\right)$ where S is the surface of the box $-1 \leq x \leq 2,0 \leq y \leq 1$, and $1 \leq z \leq 4$, oriented outwards.

Solution:

1. Parametrize the surface by $x=x, y=2 \cos \theta$, and $z=2 \sin \theta$ for $0 \leq \theta \leq 2 \pi$, $0 \leq x \leq 3-2 \cos \theta$. Then $\vec{r}_{x}=(1,0,0)$ and $\vec{r}_{\theta}=(0,2 \cos \theta,-2 \sin \theta)$. So $\vec{r}_{x} \times \vec{r}_{\theta}=-2 \sin \theta \vec{j}-2 \cos \theta \vec{k}$. Our integral then becomes

$$
\begin{aligned}
\int_{S} \vec{F} \cdot d \vec{S} & =\int_{0}^{2 \pi} \int_{0}^{3-2 \cos \theta}(0,2 \cos \theta,-2 \sin \theta) \cdot\left(x^{2}, 4 \cos \theta,-6 \sin \theta\right) d x d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{3-2 \cos \theta} 4 \sin \theta \cos \theta d x d \theta \\
& =\int_{0}^{2 \pi} 12 \sin \theta \cos \theta-8 \sin \theta \cos ^{2} \theta d \theta=0
\end{aligned}
$$

2. We use Stokes' theorem and then Green's theorem. Note that the boundary circle C is the circle of radius 4 centered at the origin in the $x y$-plane. Let D be the disk of radius 4 enclosed by C in the $x y$-plane. Then

$$
\begin{aligned}
\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{S} & =\int_{C} \vec{F} \cdot d \vec{r} \\
& =\int_{C} y d x-x d y \\
& =\iint_{D}-2 d A=-2 \cdot(16 \pi)=-32 \pi
\end{aligned}
$$

3. We use the divergence theorem. Note that $\nabla \cdot \vec{F}=\pi \cos (\pi x)+3 y^{2} z+2 z$. So our integral becomes

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d \vec{S} & =\int_{-1}^{2} \int_{0}^{1} \int_{1}^{4}\left(\pi \cos (\pi x)+3 y^{2} z+2 z\right) d z d y d x \\
& =\int_{-1}^{2} \int_{0}^{1} 3 \pi \cos (\pi x)+\frac{45}{2} y^{2}+15 d y d x \\
& =\int_{-1}^{2} 3 \pi \cos (\pi x)+\frac{15}{2}+15 d x=\frac{135}{2}
\end{aligned}
$$

5 Stokes' theorem

1. Verify Stokes' theorem for the following surfaces S and vector fields \mathbf{F}.
(a) $\mathbf{F}(x, y, z)=(y, z, x), S$ is the hemisphere $x^{2}+y^{2}+z^{2}=1, y \geq 0$.

Solution: We assume that the hemisphere is oriented "outward". $\nabla \times \mathbf{F}=$ $(-1,-1,-1)$ so using that the normal vector for spherical coordinates (here we are using the y-axis instead of the z-axis as we usually do) $\mathbf{r}(\phi, \theta)$ is $\sin \phi \mathbf{r}(\phi, \theta)$ we have

$$
\begin{aligned}
\iint_{S}(-1,-1,-1) d \mathbf{S} & =-\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \sin ^{2} \phi(\cos \theta+\sin \theta)+\sin \phi \cos \phi d \theta d \phi \\
& =-2 \pi \int_{0}^{\pi / 2} \sin \phi \cos \phi d \phi \\
& =-\pi
\end{aligned}
$$

On the other hand, the boundary of this surface is parametrized by $\mathbf{r}(t)=$ $(\cos t, 0,-\sin t)$ so

$$
\begin{aligned}
\int_{\partial S} \mathbf{F} d \mathbf{r} & =\int_{0}^{2 \pi}(0,-\sin t, \cos t) \cdot(-\sin t, 0,-\cos t) d t \\
& =-\pi
\end{aligned}
$$

(b) $\mathbf{F}(x, y, z)=(-y, x,-2)$ and S is the cone $z^{2}=x^{2}+y^{2}, 0 \leq z \leq 4$.

Solution: First compute $\nabla \times \mathbf{F}=(0,0,2)$ This cone is describe in spherical coordinates by $\phi=\pi / 4, \rho \leq 4$ so we can parametrize it as $\mathbf{r}(\rho, \theta)=\frac{1}{\sqrt{2}}(\rho \cos \theta, \rho \sin \theta, \rho)$. This gives $\mathbf{r}_{\rho} \times \mathbf{r}_{\theta}=\frac{\rho}{2}(-\cos \theta, \sin \theta, 1)$. This is oriented upwards so we have to flip the sign to get the desired downward orientation. Now we compute

$$
\begin{aligned}
\iint_{S} \mathbf{F} d \mathbf{S} & =\int_{0}^{4} \int_{0}^{2 \pi}(0,0,2) \cdot \frac{\rho}{2}(\cos \theta,-\sin \theta,-1) d \theta d \phi \\
& =-4 \pi \int_{0}^{4} \rho d \rho=-32 \pi
\end{aligned}
$$

On the other hand, the boundary can be parametrized by $\mathbf{r}(t)=(4 \cos t,-4 \sin t, 4)$, yielding

$$
\int_{\partial S}=\int_{0}^{2 \pi}(4 \sin t, 4 \cos t,-2) \cdot(-4 \sin t,-4 \cos t, 0) d t=-32 \pi
$$

6 Past final problems

1. Let C be the spiral $r=\theta$ between $\theta=0$ and $\theta=a$, for some $a>0$.
a) Set up an integral to find the integral of $x y$ over C with respect to arc length. Do not attempt to evaluate the integral.
b) Write down a vector field \vec{F} (not depending on a) such that $\int_{C} \vec{F} \cdot d \vec{r}$ is equal to the integral in (a).
2. Calculate $\iint_{S} \vec{F} \cdot d \vec{S}$ where S is the unit sphere $x^{2}+y^{2}+z^{2}=1$, oriented using the outward pointing normal, and

$$
\vec{F}=(x+\sin y, y+\sin z, z+\sin x) .
$$

3. Let \vec{r}_{1} and \vec{r}_{2} be two parametric curves in three dimensions that satisfy

$$
\begin{aligned}
& \frac{d \vec{r}_{1}}{d t}=\vec{r}_{2}-\vec{r}_{1} \\
& \frac{d \vec{r}_{2}}{d t}=\vec{r}_{2}+\vec{r}_{1} .
\end{aligned}
$$

Show that $\vec{r}_{1} \times \vec{r}_{2}$ is constant in time.
4. Find the volume of the solid enclosed by the surface

$$
\left(x^{2}+y^{2}+z^{2}\right)^{2}=2 z\left(x^{2}+y^{2}\right) .
$$

Solution:

1. a) We can parametrize the curve by $x=\theta \cos \theta, y=\theta \sin \theta$. Then

$$
\sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}}=\sqrt{(\cos \theta-\theta \sin \theta)^{2}+(\sin \theta+\theta \cos \theta)^{2}}=\sqrt{1+\theta^{2}}
$$

So our arc length integral is

$$
\int_{0}^{a} x y \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\int_{0}^{a} \theta^{2} \cos \theta \sin \theta \sqrt{1+\theta^{2}} d \theta
$$

b) The easiest way to do this is to force the first component of \vec{F} to be zero. If F_{2} is the second component of \vec{F}, we want

$$
\int_{0}^{a} \theta^{2} \cos \theta \sin \theta \sqrt{1+\theta^{2}} d \theta=\int_{0}^{a} \vec{F}(\vec{r}(\theta)) \cdot \vec{r}^{\prime}(\theta) d \theta=\int_{0}^{a} F_{2}(\vec{r}(\theta)) y^{\prime}(\theta) d \theta
$$

So we can set

$$
F_{2}(\vec{r}(\theta))=\frac{\theta^{2} \cos \theta \sin \theta \sqrt{1+\theta^{2}}}{y^{\prime}(\theta)}=\frac{\theta^{2} \cos \theta \sin \theta \sqrt{1+\theta^{2}}}{\sin \theta+\theta \cos \theta} .
$$

Rewriting this in terms of the variables x and y, we get

$$
\vec{F}=\frac{x y \sqrt{1+x^{2}+y^{2}} \sqrt{x^{2}+y^{2}}}{y+x \sqrt{x^{2}+y^{2}}} \vec{j} .
$$

Plenty of other vector fields would also work; this is just the easiest one to find.
2. Note $\nabla \cdot \vec{F}=3$, so by the divergence theorem, the result is just 3 times the volume of the unit ball. Thus the answer is 12π.
3. To simplify notation we replace $d / d t$ with primes. The product rule still holds for cross products (prove it!), so

$$
\begin{aligned}
\left(\vec{r}_{1} \times \vec{r}_{2}\right)^{\prime} & =\vec{r}_{1} \times \vec{r}_{2}+\vec{r}_{1} \times \vec{r}_{2}^{\prime} \\
& =\left(\vec{r}_{2}-\vec{r}_{1}\right) \times \vec{r}_{2}+\vec{r}_{1} \times\left(\vec{r}_{2}+\vec{r}_{1}\right) \\
& =-\vec{r}_{1} \times \vec{r}_{2}+\vec{r}_{1} \times \vec{r}_{2}=0 .
\end{aligned}
$$

Thus the time derivative of $\vec{r}_{1} \times \vec{r}_{2}$ is zero; this is the same as saying that $\vec{r}_{1} \times \vec{r}_{2}$ is constant in time.
4. We rewrite this surface in spherical coordinates as $\rho^{4}=2 \rho^{3} \cos \phi \sin ^{2} \phi$. Now we find the bounds for an integral in spherical coordinates. Note that θ is unconstrained, so $0 \leq \theta \leq 2 \pi$. We see that $\cos \phi$ must be positive, so $0 \leq \phi \leq \pi / 2$. Our defining equation shows $0 \leq \rho \leq 2 \cos \phi \sin \phi$. So our volume integral is

$$
2 \pi \int_{0}^{\pi / 2} \int_{0}^{2 \cos \phi \sin ^{2} \phi} \rho^{2} \sin \phi d \rho d \phi=\frac{16 \pi}{3} \int_{0}^{\pi / 2} \cos ^{3} \phi \sin ^{7} \phi d \phi=\frac{2 \pi}{15} .
$$

