Discussion 20 Worksheet Answers

More Stokes and Divergence
Date: 12/1/2021

MATH 53 Multivariable Calculus

1 Archimedes’ Principle
The Force exerted on a solid D with surface S fully submerged in water is given by

= // —pndS
S

where the pressure p is given by —pgz (p is the density of water and g the gravitational acceleration)
if we assume that the surface of the water is at z = 0. Use the divergence theorem to show
Archimedes’ principle F' = pgvol(D).

Hint: Compute F-i,F-j,F -k

2 identities

Prove each of these identities, assuming that D is a solid region in 3D space and S = 0D.

a-ndS = 0 where a is any constant vector.
) y
S

‘ Solution: This follows from the divergence theorem because V - a = 0. ‘

(i) Vol(D / / F - dS where F(z,y,2) = (z,y, 2)

Solutlon Also follows from the divergence theorem because V- F = 3. ‘

(iif) // fVyg)-dS = // fV2g+Vf-Vgdv

Solution: Since V- (fVg) = Vf-Vg+ fV?2g so the divergence theorem fives us this
identity.

3 parametrizing surfaces

Parametrize the following surfaces
(a) 22 +y? +1=22 (Hint: graph)
(b) 22 +y? =22 (try spherical coordinates)
(c) 22 +y? = (1+2%)?  (Hint: cylindrical coordinates)

e =1+19y%>+2cos?z

)
)
(d) > +22=¢€"
(e) e”
(f) (@2 + 92 + 22)%/2 = 222 + 2% + 22
)

(g) zsinz =ycosz



4 Stokes / surface integrals
1. Compute ffsﬁ - dS where F = (22,22, —3y) and S is the portion of y2 + 22 = 4 between
r=0andz=3-=z.

2. Compute ffS(V X ﬁ) -dS where F = (y, —x,yx3) and S is the portion of the sphere of radius
4 with z > 0 and the upwards orientation.

3. Compute ffsﬁ - dS where F = (sin(mz), 2y, 22 + 4) where S is the surface of the box
—1<2<2,0<y<1,and 1<z <4, oriented outwards.

Solution:

1. Parametrize the surface by x = z, y = 2cosf, and z = 2sinf for 0 < 0 < 2m,
0 <z < 3—2cosf. Then 7, = (1,0,0) and 7p = (0,2cosf,—2sinf). So
Ty X 79 = —28in 67 — 2 cos Ok. Our integral then becomes

2w p3—2cosf
/ F.dS = / / (0,2cos 0, —2sinf) - (z2, 4 cos 0, —6 sin 0)dxdf
s o Jo
27 r3—2cosf
= / / 4 sin 6 cos Odxdl
o Jo

27
:/ 12sin 6 cos @ — 8sin 6 cos® 6df = 0.
0

2. We use Stokes’ theorem and then Green’s theorem. Note that the boundary circle
C' is the circle of radius 4 centered at the origin in the xy-plane. Let D be the
disk of radius 4 enclosed by C' in the xy-plane. Then

//(vXﬁ).dS*:/ﬁ-df
S C
:/ydx—a:dy

C
_ / _9dA = 2. (167) = —32r.
D

3. We use the divergence theorem. Note that V- F = 7 cos(mz) 4 3y%z + 2z. So our
integral becomes

2 1 4
// F.dS = / / / (7 cos(mz) + 3y?z + 22)dzdydx
S -1Jo J1

2 1 45 )
= 3mcos(mx) + =y~ + 15dydx
2

15 135
= / 3mecos(rx) + — + 15dr = —.
. 2 2




5 Stokes’ theorem

1. Verify Stokes’ theorem for the following surfaces S and vector fields F.

(a) F(z,y,2) = (y,2,7), S is the hemisphere 22 + y% + 22 = 1,y > 0.

Solution: We assume that the hemisphere is oriented ”outward”. V x F =
(=1,—1,—1) so using that the normal vector for spherical coordinates (here we are
using the y-axis instead of the z-axis as we usually do) r(¢,0) is sin ¢r(¢, §) we have

w/2 2w
//(—1,—1,—1)dS = —/ / sin? ¢(cos 6 4 sin #) + sin ¢ cos ¢ df do
s 0 0
/2
= —271/ sin ¢ cos ¢ d¢
0

= —T

On the other hand, the boundary of this surface is parametrized by r(t) =
(cost,0,—sint) so

2w
/ Fdr = / (0, —sint, cost) - (—sint, 0, — cost) dt
oS 0

=—7

(b) F(z,y,2) = (—y,x,—2) and S is the cone 22 = 2% + 2,0 < z < 4.

Solution: First compute VxF = (0,0, 2) This cone is describe in spherical coordinates
by ¢ = 7/4, p < 4 so we can parametrize it as r(p, ) = %(p cos @, psin@, p). This gives
r, Xrg = §(—cosf,sinf, 1). This is oriented upwards so we have to flip the sign to get

the desired downward orientation. Now we compute

//SFds_/;/:’r(o,o,g).
4

= —47r/ pdp = =327
0

[\ iast

(cosf, —sinf,—1) df do

On the other hand, the boundary can be parametrized by r(t) = (4cost, —4sint,4),
yielding

2
/ = / (4sint,4cost,—2) - (—4sint,—4cost,0) dt = —32w
oS 0

6 Past final problems

1. Let C be the spiral r = 6 between 6 = 0 and 0 = a, for some a > 0.

a) Set up an integral to find the integral of xy over C' with respect to arc length. Do not
attempt to evaluate the integral.



b) Write down a vector field F' (not depending on a) such that fcﬁ - dr is equal to the
integral in (a).

. Calculate ffS F - dS where S is the unit sphere z2 4+ 4% + 22 = 1, oriented using the outward
pointing normal, and

F = (z+siny,y+sinz,z 4 sinx).

. Let 7 and 7 be two parametric curves in three dimensions that satisfy

ry
— =Ty —T
i 9 — 71
dra o
—= =T+ T
o 2+ 7

Show that 7 x 75 is constant in time.

. Find the volume of the solid enclosed by the surface

(:U2 + %+ 22)2 = 22(x2 + y2).



Solution:

1. a) We can parametrize the curve by x = 6 cosf, y = 0sinf. Then

2 2
\/<d$> + (dy) = /(cosf — 0sin6)2 + (sinh + cos )2 = V1+ 62

do do

So our arc length integral is

a d 2 d 2 a
/xy ) 4 (Y d9:/ 62 cos O sin 0+/1 + 02d6.
) a9 a9 o

b) The easiest way to do this is to force the first component of F' to be zero. If
F5 is the second component of F', we want

/ 62 cos 0 sin 0/ 1 + 62dH = / F(F(G)) . F’(G)d@ = / FQ(F(G))y'(G)dG.
0 0 0
So we can set

62 cos 0sin 0v/1 + 02 B 62 cos 0 sin 0v/1 + 02

F(r0)) = y'(0) ~ sinf+0cosh

Rewriting this in terms of the variables  and y, we get

zyy/1 422+ y>/2% + 2~

Y+ zy/2? + y?

Plenty of other vector fields would also work; this is just the easiest one to
find.

F =

2. Note V- F = 3, so by the divergence theorem, the result is just 3 times the volume
of the unit ball. Thus the answer is 127.

3. To simplify notation we replace d/dt with primes. The product rule still holds for
cross products (prove it!), so

(lefg)/:ﬂxﬂg—i-??le'é
= (7 — 1) X 7o + 71 X (T2 +71)
= —7] X Ty + 71 X7y =0.

Thus the time derivative of 7 x 75 is zero; this is the same as saying that 7 X 7%
is constant in time.

4. We rewrite this surface in spherical coordinates as p* = 2p3 cos ¢ sin? ¢. Now we
find the bounds for an integral in spherical coordinates. Note that € is uncon-
strained, so 0 < 6 < 2w. We see that cos ¢ must be positive, so 0 < ¢ < /2. Our
defining equation shows 0 < p < 2cos ¢ sin ¢. So our volume integral is

w/2  p2cospsin? ¢ 1 /2 9
27‘(’/ / p? sin pdpde = 671_/ cos® ¢ sin” pdgp = =
0 0 3 Jo 15
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