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MATH 53 Multivariable Calculus

1 Archimedes’ Principle

The Force exerted on a solid D with surface S fully submerged in water is given by

F =

∫∫
S
−pn̂ dS

where the pressure p is given by −ρgz (ρ is the density of water and g the gravitational acceleration)
if we assume that the surface of the water is at z = 0. Use the divergence theorem to show
Archimedes’ principle ~F = ρg vol(D).
Hint: Compute F · i,F · j,F · k

2 identities

Prove each of these identities, assuming that D is a solid region in 3D space and S = ∂D.

(i)

∫∫
S
a · n dS = 0 where a is any constant vector.

Solution: This follows from the divergence theorem because ∇ · a = 0.

(ii) Vol(D) = 1
3

∫∫
S
F · dS where F(x, y, z) = (x, y, z)

Solution: Also follows from the divergence theorem because ∇ · F = 3.

(iii)

∫∫
S

(f∇g) · dS =

∫∫∫
D
f∇2g +∇f · ∇g dV

Solution: Since ∇ · (f∇g) = ∇f · ∇g + f∇2g so the divergence theorem fives us this
identity.

3 parametrizing surfaces

Parametrize the following surfaces

(a) x2 + y2 + 1 = z2 (Hint: graph)

(b) x2 + y2 = z2 (try spherical coordinates)

(c) x2 + y2 = (1 + z2)2 (Hint: cylindrical coordinates)

(d) y2 + z2 = ex

(e) ex = 1 + y2 + 2 cos2 z

(f) (x2 + y2 + z2)3/2 = 2x2 + 2y2 + z2

(g) x sin z = y cos z
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4 Stokes / surface integrals

1. Compute
∫∫
S
~F · d~S where ~F = (x2, 2z,−3y) and S is the portion of y2 + z2 = 4 between

x = 0 and x = 3− z.

2. Compute
∫∫
S(∇× ~F ) ·d~S where ~F = (y,−x, yx3) and S is the portion of the sphere of radius

4 with z ≥ 0 and the upwards orientation.

3. Compute
∫∫
S
~F · d~S where ~F = (sin(πx), zy3, z2 + 4x) where S is the surface of the box

−1 ≤ x ≤ 2, 0 ≤ y ≤ 1, and 1 ≤ z ≤ 4, oriented outwards.

Solution:

1. Parametrize the surface by x = x, y = 2 cos θ, and z = 2 sin θ for 0 ≤ θ ≤ 2π,
0 ≤ x ≤ 3 − 2 cos θ. Then ~rx = (1, 0, 0) and ~rθ = (0, 2 cos θ,−2 sin θ). So
~rx × ~rθ = −2 sin θ~j − 2 cos θ~k. Our integral then becomes∫

S

~F · d~S =

∫ 2π

0

∫ 3−2 cos θ

0
(0, 2 cos θ,−2 sin θ) · (x2, 4 cos θ,−6 sin θ)dxdθ

=

∫ 2π

0

∫ 3−2 cos θ

0
4 sin θ cos θdxdθ

=

∫ 2π

0
12 sin θ cos θ − 8 sin θ cos2 θdθ = 0.

2. We use Stokes’ theorem and then Green’s theorem. Note that the boundary circle
C is the circle of radius 4 centered at the origin in the xy-plane. Let D be the
disk of radius 4 enclosed by C in the xy-plane. Then∫∫

S
(∇× ~F ) · d~S =

∫
C

~F · d~r

=

∫
C
ydx− xdy

=

∫∫
D
−2dA = −2 · (16π) = −32π.

3. We use the divergence theorem. Note that ∇ · ~F = π cos(πx) + 3y2z+ 2z. So our
integral becomes∫∫

S

~F · d~S =

∫ 2

−1

∫ 1

0

∫ 4

1
(π cos(πx) + 3y2z + 2z)dzdydx

=

∫ 2

−1

∫ 1

0
3π cos(πx) +

45

2
y2 + 15dydx

=

∫ 2

−1
3π cos(πx) +

15

2
+ 15dx =

135

2
.
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5 Stokes’ theorem

1. Verify Stokes’ theorem for the following surfaces S and vector fields F.

(a) F(x, y, z) = (y, z, x), S is the hemisphere x2 + y2 + z2 = 1, y ≥ 0.

Solution: We assume that the hemisphere is oriented ”outward”. ∇ × F =
(−1,−1,−1) so using that the normal vector for spherical coordinates (here we are
using the y-axis instead of the z-axis as we usually do) r(φ, θ) is sinφr(φ, θ) we have∫∫

S
(−1,−1,−1) dS = −

∫ π/2

0

∫ 2π

0
sin2 φ(cos θ + sin θ) + sinφ cosφdθ dφ

= −2π

∫ π/2

0
sinφ cosφdφ

= −π

On the other hand, the boundary of this surface is parametrized by r(t) =
(cos t, 0,− sin t) so∫

∂S
F dr =

∫ 2π

0
(0,− sin t, cos t) · (− sin t, 0,− cos t) dt

= −π

(b) F(x, y, z) = (−y, x,−2) and S is the cone z2 = x2 + y2, 0 ≤ z ≤ 4.

Solution: First compute∇×F = (0, 0, 2) This cone is describe in spherical coordinates
by φ = π/4, ρ ≤ 4 so we can parametrize it as r(ρ, θ) = 1√

2
(ρ cos θ, ρ sin θ, ρ). This gives

rρ× rθ = ρ
2(− cos θ, sin θ, 1). This is oriented upwards so we have to flip the sign to get

the desired downward orientation. Now we compute∫∫
S
F dS =

∫ 4

0

∫ 2π

0
(0, 0, 2) · ρ

2
(cos θ,− sin θ,−1) dθ dφ

= −4π

∫ 4

0
ρ dρ = −32π

On the other hand, the boundary can be parametrized by r(t) = (4 cos t,−4 sin t, 4),
yielding ∫

∂S
=

∫ 2π

0
(4 sin t, 4 cos t,−2) · (−4 sin t,−4 cos t, 0) dt = −32π

6 Past final problems

1. Let C be the spiral r = θ between θ = 0 and θ = a, for some a > 0.

a) Set up an integral to find the integral of xy over C with respect to arc length. Do not
attempt to evaluate the integral.
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b) Write down a vector field ~F (not depending on a) such that
∫
C
~F · d~r is equal to the

integral in (a).

2. Calculate
∫∫
S
~F · d~S where S is the unit sphere x2 + y2 + z2 = 1, oriented using the outward

pointing normal, and
~F = (x+ sin y, y + sin z, z + sinx).

3. Let ~r1 and ~r2 be two parametric curves in three dimensions that satisfy

d~r1
dt

= ~r2 − ~r1
d~r2
dt

= ~r2 + ~r1.

Show that ~r1 × ~r2 is constant in time.

4. Find the volume of the solid enclosed by the surface

(x2 + y2 + z2)2 = 2z(x2 + y2).
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Solution:

1. a) We can parametrize the curve by x = θ cos θ, y = θ sin θ. Then√(
dx

dθ

)2

+

(
dy

dθ

)2

=
√

(cos θ − θ sin θ)2 + (sin θ + θ cos θ)2 =
√

1 + θ2.

So our arc length integral is

∫ a

0
xy

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

∫ a

0
θ2 cos θ sin θ

√
1 + θ2dθ.

b) The easiest way to do this is to force the first component of ~F to be zero. If
F2 is the second component of ~F , we want∫ a

0
θ2 cos θ sin θ

√
1 + θ2dθ =

∫ a

0

~F (~r(θ)) · ~r′(θ)dθ =

∫ a

0
F2(~r(θ))y

′(θ)dθ.

So we can set

F2(~r(θ)) =
θ2 cos θ sin θ

√
1 + θ2

y′(θ)
=
θ2 cos θ sin θ

√
1 + θ2

sin θ + θ cos θ
.

Rewriting this in terms of the variables x and y, we get

~F =
xy
√

1 + x2 + y2
√
x2 + y2

y + x
√
x2 + y2

~j.

Plenty of other vector fields would also work; this is just the easiest one to
find.

2. Note ∇· ~F = 3, so by the divergence theorem, the result is just 3 times the volume
of the unit ball. Thus the answer is 12π.

3. To simplify notation we replace d/dt with primes. The product rule still holds for
cross products (prove it!), so

(~r1 × ~r2)′ = ~r′1 × ~r2 + ~r1 × ~r′2
= (~r2 − ~r1)× ~r2 + ~r1 × (~r2 + ~r1)

= −~r1 × ~r2 + ~r1 × ~r2 = 0.

Thus the time derivative of ~r1 × ~r2 is zero; this is the same as saying that ~r1 × ~r2
is constant in time.

4. We rewrite this surface in spherical coordinates as ρ4 = 2ρ3 cosφ sin2 φ. Now we
find the bounds for an integral in spherical coordinates. Note that θ is uncon-
strained, so 0 ≤ θ ≤ 2π. We see that cosφ must be positive, so 0 ≤ φ ≤ π/2. Our
defining equation shows 0 ≤ ρ ≤ 2 cosφ sinφ. So our volume integral is

2π

∫ π/2

0

∫ 2 cosφ sin2 φ

0
ρ2 sinφdρdφ =

16π

3

∫ π/2

0
cos3 φ sin7 φdφ =

2π

15
.
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