# Discussion 2 Worksheet Answers <br> Tangents, Area, Arclength 

Date: 8/30/2021
MATH 53 Multivariable Calculus

## 1 Computing Tangents

Compute the slopes of the following curves at a point in time $t$. Find the points where the tangents are vertical and horizontal and compute the second derivative $d^{2} y / d x^{2}$ at the horizontal points.
(a) $x=\cos t, y=\sin t$
(c) $x=e^{t}-1, y=\sin t$
(b) $x=t^{2}-1 y=t^{3}-t$
(d) $x=e^{t}-t, y=\cos t$

## Solution:

(a) $x^{\prime}(t)=-\sin t, y^{\prime}(t)=\cos t$ so the slope is $\frac{d y}{d x}=-\frac{\cos t}{\sin t}=-\cot t$. The tangents are horizontal where $x^{\prime}(t)=0$, i.e. at $t=\pi / 2+k \pi$ and vertical where $y^{\prime}(t)=0$, i.e. at $k \pi, k \in \mathbb{Z}$. For the second derivative, we get

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{\prime}(t)} \frac{d}{d t} \frac{d y}{d x}=\frac{-1}{\sin t}\left(\frac{1}{\tan ^{2} t \cos ^{2} t}\right)=\frac{-1}{\sin ^{3} t}
$$

which is -1 at $t=\pi / 2+k \pi$ for even $k$ and +1 for odd $k$.
(b) $x^{\prime}(t)=2 t, y^{\prime}(t)=3 t^{2}-1$ so the slope is $\frac{d y}{d x}=\frac{3 t^{2}-1}{2 t}$. The tangents are horizontal at $t= \pm 1 / \sqrt{3}$ and vertical at $t=0$. Note that the point $(0,0)$ which corresponds to $t= \pm 1$ has two different tangents. The second derivative is

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{2 t} \frac{d}{d t} \frac{3 t^{2}-1}{2 t}=\frac{12 t^{2}-2\left(3 t^{2}-1\right)}{8 t^{3}}=\frac{6 t^{2}+2}{8 t^{3}}
$$

So at the horizontal points we get $\pm 3 \sqrt{3} / 2$.
(c) $x^{\prime}(t)=e^{t}, y^{\prime}(t)=\cos t$ so the slope is $\frac{d y}{d x}=e^{-t} \cos t$. The tangents are horizontal at $t=\pi / 2+k \pi, k \in \mathbb{Z}$ and never vertical. The second derivative is

$$
\frac{d^{2} y}{d x^{2}}=e^{-t} \frac{d}{d t} e^{-t} \cos t=-e^{-2 t}(\sin t+\cos t)
$$

At the points with horizontal tangents we get $(-1)^{k+1} e^{-\pi-2 \pi k}$.
(d) $x^{\prime}(t)=e^{t}-1$ and $y^{\prime}(t)=-\sin (t)$. We have $x^{\prime}(0)=y^{\prime}(0)=0$, so the slope as 0 is undefined (although L'Hôpital's rule makes it reasonable to assign slope -1 to this point). Horizontal tangents occur at $t=k \pi$ where $k \in \mathbb{Z}$ but $k \neq 0$. The second derivative is (after some simplification)

$$
\frac{d^{2} y}{d x^{2}}=\frac{\cos t+e^{t}(\sin t-\cos t)}{\left(e^{t}-1\right)^{3}}
$$

so at $t=k \pi$ it's $(-1)^{k+1}\left(1-e^{k \pi}\right)^{-2}$.

## 2 Computing Areas

Using the appropriate formula, find the area in question.
(a) Use the parametric equations of an ellipse, $x=a \cos \theta, y=b \sin \theta, 0 \leq \theta \leq 2 \pi$, to find the area that it encloses.
(b) Find the area enclosed by the $x$-axis and the curve $x=t^{3}+1, y=2 t-t^{2}$.
(c) Find the area of the region enclosed by the astroid $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$.

## Solution:

(a) Applying the formula and by symmetry we have

$$
4 \int_{0}^{a} y d x=4 \int_{\pi / 2}^{0} b \sin \theta(-a \sin \theta) d \theta=2 a b \int_{0}^{\pi / 2} 1-\cos 2 \theta d \theta=\pi a b
$$

as the area.
(b) Notice that $y=2 t-t^{2}$ intersects that $x$-axis at $t=0$ and $t=2$. The corresponding values of $x$ are 1 and 9 so the area in question is

$$
\int_{1}^{9} y d x=\int_{0}^{2}\left(2 t-t^{2}\right)\left(3 t^{2}\right) d t=3\left[\frac{t^{4}}{2}-\frac{t^{5}}{5}\right]_{0}^{2}=\frac{24}{5}
$$

(c) Applying the formula and by symmetry we have

$$
4 \int_{0}^{a} y d x=4 \int_{\pi / 2}^{0} a \sin ^{3} \theta\left(-3 a \cos ^{2} \theta \sin \theta\right) d \theta=12 a^{2} \int_{0}^{\pi / 2} \sin ^{4} \theta \cos ^{2} \theta d \theta=\frac{3 \pi a^{2}}{8}
$$

as the area.

## 3 Computing Arc Lengths

Using the appropriate formula, find the length of the curve.
(a) $x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1$.
(b) $x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 2$.
(c) $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$.

## Solution:

(a) Applying the formula we have

$$
\begin{aligned}
L=\int_{0}^{1} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t & =\int_{0}^{1} 6 t \sqrt{1+t^{2}} d t \\
& =\left[2\left(1+t^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =4 \sqrt{2}-2 .
\end{aligned}
$$

(b) Applying the formula we have

$$
L=\int_{0}^{2} \sqrt{\left(e^{t}-1\right)^{2}+\left(2 e^{t / 2}\right)^{2}} d t=\int_{0}^{2} \sqrt{e^{2 t}+2 e^{t}+1} d t=\int_{0}^{2} e^{t}+1 d t=e^{2}+1 .
$$

(c) Applying the formula we have

$$
\begin{aligned}
L=\int_{0}^{\pi} \sqrt{\left(e^{t} \cos t-e^{t} \sin t\right)^{2}+\left(e^{t} \cos t+e^{t} \sin t\right)^{2}} d t & =\int_{0}^{\pi} \sqrt{2 e^{2 t} \cos ^{2} t+2 e^{2 t} \sin ^{2} t} d t \\
& =\int_{0}^{\pi} \sqrt{2} e^{t} d t \\
& =\sqrt{2}\left(e^{\pi}-1\right) .
\end{aligned}
$$

## 4 True/False

(a) T F The parametric representation of a curve is unique.

Solution: False. We can transform $\theta \rightarrow 2 \theta$ and recover the same curve
(b) T F When integrating, we can replace $\sin ^{2} \theta$ with $(1-\cos 2 \theta) / 2$.

Solution: True, this can be deduced from the general addition theorem $\cos 2 \theta=$ $1-2 \sin ^{2} \theta$.
(c) T F A (parametric) curve can only be described in either Cartesian coordinates $x=f(t), y=$ $g(t)$ or in polar coordinates $r=f(\theta)$, but not both.
Solution: False. Typically a curve can be described both ways.
(d) $\mathrm{T} \mathrm{F} \sin (2 t)=2 \sin t \cos t$

Solution: True, this can be deduced from the general addition theorem $\sin (s+t)=$ $\sin s \cos t+\cos s \sin t$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

