Discussion 17 Worksheet Answers Some past exam problems

Date: 11/8/2021

MATH 53 Multivariable Calculus

1 Computing Curl and Divergence

For each of the following vector fields \vec{F} , compute its curl and divergence. State whether each vector field is irrotational, incompressible, or neither.

- 1. $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$ Solution: We have $\nabla \cdot \vec{F} = \frac{\partial}{\partial x}x + \frac{\partial}{\partial y}y + \frac{\partial}{\partial z}z = 1 + 1 + 1 = 3$ and $\nabla \times \vec{F} = \left(\frac{\partial}{\partial y}z - \frac{\partial}{\partial z}y\right)\vec{i} + \left(\frac{\partial}{\partial z}x - \frac{\partial}{\partial x}z\right)\vec{j} + \left(\frac{\partial}{\partial x}y - \frac{\partial}{\partial y}x\right)\vec{k} = \vec{0}.$ Because $\nabla \times \vec{F} = \vec{0}$, we see that \vec{F} is irrotational.
- 2. $\vec{F} = \langle y^2, z^3, x^4 \rangle$

 ${\bf Solution:} \ \ {\rm We \ have}$

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}y^2 + \frac{\partial}{\partial y}z^3 + \frac{\partial}{\partial z}x^3 = 0 + 0 + 0 = 0$$

and

$$\nabla \times \vec{F} = \left(\frac{\partial}{\partial y}x^4 - \frac{\partial}{\partial z}z^3\right)\vec{i} + \left(\frac{\partial}{\partial z}y^2 - \frac{\partial}{\partial x}x^4\right)\vec{j} + \left(\frac{\partial}{\partial x}z^3 - \frac{\partial}{\partial y}y^2\right)\vec{k}$$
$$= -3z^2\vec{i} - 4x^3\vec{j} - 2y\vec{k}.$$

Because $\nabla \cdot \vec{F} = 0$, we see that \vec{F} is incompressible.

3. $\vec{F} = \langle y^2 x, e^z, z^2 \rangle$

Solution: We have

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x} y^2 x + \frac{\partial}{\partial y} e^z + \frac{\partial}{\partial z} z^2 = y^2 + 2z$$

and

$$\nabla \times \vec{F} = \left(\frac{\partial}{\partial y}z^2 - \frac{\partial}{\partial z}e^z\right)\vec{i} + \left(\frac{\partial}{\partial z}y^2x - \frac{\partial}{\partial x}z^2\right)\vec{j} + \left(\frac{\partial}{\partial x}e^z - \frac{\partial}{\partial y}y^2x\right)\vec{k}$$
$$= -e^z\vec{i} - 2yx\vec{k}.$$

This vector field is neither irrotational nor incompressible (as $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ are both nonzero).

4. $\vec{F} = \nabla f$, where $f(x, y, z) = 2xye^{yz}$

Solution: We have

$$\nabla \cdot \vec{F} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0 + (4xze^{yz} + 2xyz^2e^{yz}) + 2xy^3e^{yz} = (4xz + 2xyz^2 + 2xy^3)e^{yz}$$
and

$$\nabla \times \vec{F} = \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y}\right)\vec{i} + \left(\frac{\partial^2 f}{\partial z \partial x} - \frac{\partial^2 f}{\partial x \partial y}\right)\vec{j} + \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x}\right)\vec{k} = \vec{0}$$

by Clairaut's theorem.

2 Divergence and Curl Identities

Let $\vec{F} = \langle P, Q, R \rangle$ and $\vec{G} = \langle P', Q', R' \rangle$ be vector fields on \mathbb{R}^3 , and let $f : \mathbb{R}^3 \to \mathbb{R}$ and $g : \mathbb{R}^3 \to \mathbb{R}$ be functions on \mathbb{R}^3 . Assume all of these are infinitely differentiable. Prove each of the following vector identities.

1. $\nabla \cdot (\vec{F} + \vec{G}) = \nabla \cdot \vec{F} + \nabla \cdot \vec{G}$

Solution:

$$\nabla \cdot (\vec{F} + \vec{G}) = (P + P')_x + (Q + Q')_y + (R + R')_z$$

= $P_x + Q_y + R_z + P'_x + Q'_y + R'_z$
= $\nabla \cdot \vec{F} + \nabla \cdot \vec{G}$.

2. $\nabla \times (\vec{F} + \vec{G}) = \nabla \times \vec{F} + \nabla \times \vec{G}$

Solution: It's easiest to verify this component-by component. For the \vec{i} component, we have

$$(\nabla \times (\vec{F} + \vec{G})) \cdot \vec{i} = (R + R')_y - (Q + Q')_z$$
$$= (R_y - Q_z) + (R'_y - Q'_z)$$
$$= (\nabla \times \vec{F}) \cdot \vec{i} + (\nabla \times \vec{G}) \cdot \vec{i}$$
$$= (\nabla \times \vec{F} + \nabla \times \vec{G}) \cdot \vec{i}.$$

Similarly we see that the desired equation holds when we look at the \vec{j} and \vec{k} components, proving the result.

3. $\nabla\cdot(f\vec{F})=f(\nabla\cdot\vec{F})+\vec{F}\cdot(\nabla f)$

Solution:

$$\begin{aligned} \nabla \cdot (f\vec{F}) &= (fP)_x + (fQ)_y + (fR)_z \\ &= (f_x P + fP_x) + (f_y Q + fQ_y) + (f_z R + fR_z) \\ &= (fP_x + fQ_y + fR_z) + (f_x P + f_y Q + f_z R) \\ &= f(\nabla \cdot \vec{F}) + \vec{F} \cdot (\nabla f). \end{aligned}$$

4. $\nabla\times(f\vec{F})=f(\nabla\times\vec{F})+(\nabla f)\times\vec{F}$

Solution: It's easiest to verify this component-by component. For the \vec{i} component, we have

$$\begin{aligned} (\nabla \times (f\vec{F})) \cdot \vec{i} &= (fR)_y - (fQ)_z \\ &= f_y R + fR_y - f_z Q - fQ_z \\ &= f(R_y - Q_z) + (f_y R - f_z Q) \\ &= f(\nabla \times \vec{F}) \cdot \vec{i} + ((\nabla f) \times \vec{F}) \cdot \vec{i} \\ &= (f(\nabla \times \vec{F}) + (\nabla f) \times \vec{F}) \cdot \vec{i}. \end{aligned}$$

A similar computation shows that the identity holds for the \vec{j} and \vec{k} components, proving the the identity.

5. $\nabla\cdot(\vec{F}\times\vec{G})=\vec{G}\cdot(\nabla\times\vec{F})-\vec{F}\cdot(\nabla\times\vec{G})$

Solution:

$$\begin{aligned} \nabla \cdot (\vec{F} \times \vec{G}) &= (QR' - RQ')_x + (RP' - PR')_y + (PQ' - QP')_z \\ &= Q_x R' + QR'_x - R_x Q' - RQ'_x + R_y P' + RP'_y - P_y R' - PR'_y + P_z Q' + PQ'_z - Q_z P' - QP'_z \\ &= P'(R_y - Q_z) + Q'(P_z - R_x) + R'(Q_x - P_y) - P(R'_y - Q'_z) - Q(P'_z - R'_x) - R(Q'_x - P'_y) \\ &= \vec{G} \cdot (\nabla \times \vec{F}) - \vec{F} \cdot (\nabla \times \vec{G}). \end{aligned}$$

6. $\nabla \cdot (\nabla f \times \nabla g) = 0$

Solution: This follows from the previous identity (taking $\vec{F} = \nabla f$ and $\vec{G} = \nabla g$) and the fact that $\nabla \times (\nabla f) = \nabla \times (\nabla g) = 0$.

7. $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$

Solution: We again work component-by-component. Note

$$\nabla \times \vec{F} = (R_y - Q_z)\vec{i} + (P_z - R_x)\vec{j} + (Q_x - P_y)\vec{k},$$

 \mathbf{SO}

$$\begin{aligned} \left(\nabla \times (\nabla \times \vec{F})\right) \cdot \vec{i} &= (Q_x - P_y)_y - (P_z - R_x)_z \\ &= Q_{xy} - P_{yy} - P_{zz} + R_{xz} \\ &= (P_{xx} + Q_{xy} + R_{xz}) - (P_{xx} + P_{yy} + P_{zz}) \\ &= (P_x + Q_y + R_z)_x - (P_{xx} + P_{yy} + P_{zz}) \\ &= (\nabla (\nabla \cdot \vec{F})) \cdot \vec{i} - (\nabla^2 \vec{F}) \cdot \vec{i} \\ &= (\nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}) \cdot \vec{i}. \end{aligned}$$

Similar arguments show the identity also holds in the \vec{j} and \vec{k} components, proving the identity.

3 Challenge

Suppose you are given a pair of (infinitely differentiable) vector fields \vec{E} and \vec{B} in \mathbb{R}^3 in \mathbb{R}^3 , and consider each vector field as additionally varying with respect to a variable t (in addition to the variables x, y, and z for \mathbb{R}^3). Suppose furthermore that these vector fields satisfy the "Maxwell equations in vacuum:"

$$\nabla \cdot \vec{E} = 0 \qquad \qquad \nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$
$$\nabla \cdot \vec{B} = 0 \qquad \qquad \nabla \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

for some constant $c^2 > 0$. Prove that these vector fields satisfy the "wave equations"

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} \qquad \qquad \nabla^2 \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}.$$

Here $\nabla^2 \vec{E}$ is the vector Laplacian

$$\nabla^2 \vec{E} = \frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2},$$

and $\nabla^2 \vec{B}$ is defined similarly (with \vec{E} replaced by \vec{B}).

By completing this exercise, you are showing that the fundamental laws of electrodynamics suggest the possibility of electromagnetic waves, i.e. light. *Fiat lux!*

Solution: Problem 7 from Section 2 above shows that

$$\nabla^2 \vec{E} = \nabla (\nabla \cdot \vec{E}) - \nabla \times (\nabla \times \vec{E}).$$

Substituting in the equations for $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ here gives

$$\nabla^2 \vec{E} = 0 - \nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = \nabla \times \frac{\partial \vec{B}}{\partial t}$$

By Clairaut's theorem, we can replace this with

$$\nabla^2 \vec{E} = \frac{\partial}{\partial t} \left(\nabla \times \vec{B} \right).$$

Substituting in the equation for $\nabla \times \vec{B}$ gives

$$\nabla^2 \vec{E} = \frac{\partial}{\partial t} \left(\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \right) = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$$

The proof of the wave equation for \vec{B} is similar.

4 True/False

Supply convincing reasoning for your answer. Assume all functions are infinitely differentiable unless stated otherwise.

(a) T F For every vector field \vec{F} on \mathbb{R}^3 , we have $\nabla \cdot (\nabla \times \vec{F}) = 0$.

Solution: TRUE. This follows by a direct computation in the same vein as those in Section 2 above.

(b) T F The divergence of a vector field is a scalar function, while the curl of a vector field is a vector field.

Solution: TRUE. This is immediate from the definitions.

(c) T F Every vector field \vec{F} on \mathbb{R}^3 arises as the curl of some vector field \vec{G} .

Solution: FALSE. Because $\nabla \cdot (\nabla \times \vec{G}) = 0$ for all \vec{G} , we see that we must have $\nabla \cdot \vec{F} = 0$, which does not hold for all \vec{F} .

(d) T F Every function $f : \mathbb{R}^3 \to \mathbb{R}$ arises as the divergence of some vector field \vec{F} .

Solution: TRUE. For example, if we define

$$g(x, y, z) = \int_0^x f(t, y, z) dt,$$

then f is the divergence of the vector field $\vec{F}=\langle g,0,0\rangle$ (by the fundamental theorem of calculus).

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.