Discussion 17 Worksheet Answers Some past exam problems

Date: 11/8/2021
MATH 53 Multivariable Calculus

1 Computing Curl and Divergence

For each of the following vector fields \vec{F}, compute its curl and divergence. State whether each vector field is irrotational, incompressible, or neither.

1. $\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}$

Solution: We have

$$
\nabla \cdot \vec{F}=\frac{\partial}{\partial x} x+\frac{\partial}{\partial y} y+\frac{\partial}{\partial z} z=1+1+1=3
$$

and

$$
\nabla \times \vec{F}=\left(\frac{\partial}{\partial y} z-\frac{\partial}{\partial z} y\right) \vec{i}+\left(\frac{\partial}{\partial z} x-\frac{\partial}{\partial x} z\right) \vec{j}+\left(\frac{\partial}{\partial x} y-\frac{\partial}{\partial y} x\right) \vec{k}=\overrightarrow{0} .
$$

Because $\nabla \times \vec{F}=\overrightarrow{0}$, we see that \vec{F} is irrotational.
2. $\vec{F}=\left\langle y^{2}, z^{3}, x^{4}\right\rangle$

Solution: We have

$$
\nabla \cdot \vec{F}=\frac{\partial}{\partial x} y^{2}+\frac{\partial}{\partial y} z^{3}+\frac{\partial}{\partial z} x^{3}=0+0+0=0
$$

and

$$
\begin{aligned}
\nabla \times \vec{F} & =\left(\frac{\partial}{\partial y} x^{4}-\frac{\partial}{\partial z} z^{3}\right) \vec{i}+\left(\frac{\partial}{\partial z} y^{2}-\frac{\partial}{\partial x} x^{4}\right) \vec{j}+\left(\frac{\partial}{\partial x} z^{3}-\frac{\partial}{\partial y} y^{2}\right) \vec{k} \\
& =-3 z^{2} \vec{i}-4 x^{3} \vec{j}-2 y \vec{k} .
\end{aligned}
$$

Because $\nabla \cdot \vec{F}=0$, we see that \vec{F} is incompressible.
3. $\vec{F}=\left\langle y^{2} x, e^{z}, z^{2}\right\rangle$

Solution: We have

$$
\nabla \cdot \vec{F}=\frac{\partial}{\partial x} y^{2} x+\frac{\partial}{\partial y} e^{z}+\frac{\partial}{\partial z} z^{2}=y^{2}+2 z
$$

and

$$
\begin{aligned}
\nabla \times \vec{F} & =\left(\frac{\partial}{\partial y} z^{2}-\frac{\partial}{\partial z} e^{z}\right) \vec{i}+\left(\frac{\partial}{\partial z} y^{2} x-\frac{\partial}{\partial x} z^{2}\right) \vec{j}+\left(\frac{\partial}{\partial x} e^{z}-\frac{\partial}{\partial y} y^{2} x\right) \vec{k} \\
& =-e^{z} \vec{i}-2 y x \vec{k} .
\end{aligned}
$$

This vector field is neither irrotational nor incompressible (as $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ are both nonzero).
4. $\vec{F}=\nabla f$, where $f(x, y, z)=2 x y e^{y z}$

Solution: We have
$\nabla \cdot \vec{F}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0+\left(4 x z e^{y z}+2 x y z^{2} e^{y z}\right)+2 x y^{3} e^{y z}=\left(4 x z+2 x y z^{2}+2 x y^{3}\right) e^{y z}$
and

$$
\nabla \times \vec{F}=\left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}\right) \vec{i}+\left(\frac{\partial^{2} f}{\partial z \partial x}-\frac{\partial^{2} f}{\partial x \partial y}\right) \vec{j}+\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \vec{k}=\overrightarrow{0}
$$

by Clairaut's theorem.

2 Divergence and Curl Identities

Let $\vec{F}=\langle P, Q, R\rangle$ and $\vec{G}=\left\langle P^{\prime}, Q^{\prime}, R^{\prime}\right\rangle$ be vector fields on \mathbb{R}^{3}, and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be functions on \mathbb{R}^{3}. Assume all of these are infinitely differentiable. Prove each of the following vector identities.

1. $\nabla \cdot(\vec{F}+\vec{G})=\nabla \cdot \vec{F}+\nabla \cdot \vec{G}$

Solution:

$$
\begin{aligned}
\nabla \cdot(\vec{F}+\vec{G}) & =\left(P+P^{\prime}\right)_{x}+\left(Q+Q^{\prime}\right)_{y}+\left(R+R^{\prime}\right)_{z} \\
& =P_{x}+Q_{y}+R_{z}+P_{x}^{\prime}+Q_{y}^{\prime}+R_{z}^{\prime} \\
& =\nabla \cdot \vec{F}+\nabla \cdot \vec{G} .
\end{aligned}
$$

2. $\nabla \times(\vec{F}+\vec{G})=\nabla \times \vec{F}+\nabla \times \vec{G}$

Solution: It's easiest to verify this component-by component. For the \vec{i} component, we have

$$
\begin{aligned}
(\nabla \times(\vec{F}+\vec{G})) \cdot \vec{i} & =\left(R+R^{\prime}\right)_{y}-\left(Q+Q^{\prime}\right)_{z} \\
& =\left(R_{y}-Q_{z}\right)+\left(R_{y}^{\prime}-Q_{z}^{\prime}\right) \\
& =(\nabla \times \vec{F}) \cdot \vec{i}+(\nabla \times \vec{G}) \cdot \vec{i} \\
& =(\nabla \times \vec{F}+\nabla \times \vec{G}) \cdot \vec{i} .
\end{aligned}
$$

Similarly we see that the desired equation holds when we look at the \vec{j} and \vec{k} components, proving the result.
3. $\nabla \cdot(f \vec{F})=f(\nabla \cdot \vec{F})+\vec{F} \cdot(\nabla f)$

Solution:

$$
\begin{aligned}
\nabla \cdot(f \vec{F}) & =(f P)_{x}+(f Q)_{y}+(f R)_{z} \\
& =\left(f_{x} P+f P_{x}\right)+\left(f_{y} Q+f Q_{y}\right)+\left(f_{z} R+f R_{z}\right) \\
& =\left(f P_{x}+f Q_{y}+f R_{z}\right)+\left(f_{x} P+f_{y} Q+f_{z} R\right) \\
& =f(\nabla \cdot \vec{F})+\vec{F} \cdot(\nabla f) .
\end{aligned}
$$

4. $\nabla \times(f \vec{F})=f(\nabla \times \vec{F})+(\nabla f) \times \vec{F}$

Solution: It's easiest to verify this component-by component. For the \vec{i} component, we have

$$
\begin{aligned}
(\nabla \times(f \vec{F})) \cdot \vec{i} & =(f R)_{y}-(f Q)_{z} \\
& =f_{y} R+f R_{y}-f_{z} Q-f Q_{z} \\
& =f\left(R_{y}-Q_{z}\right)+\left(f_{y} R-f_{z} Q\right) \\
& =f(\nabla \times \vec{F}) \cdot \vec{i}+((\nabla f) \times \vec{F}) \cdot \vec{i} \\
& =(f(\nabla \times \vec{F})+(\nabla f) \times \vec{F}) \cdot \vec{i} .
\end{aligned}
$$

A similar computation shows that the identity holds for the \vec{j} and \vec{k} components, proving the the identity.
5. $\nabla \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot(\nabla \times \vec{F})-\vec{F} \cdot(\nabla \times \vec{G})$

Solution:

$$
\begin{aligned}
\nabla \cdot(\vec{F} \times \vec{G}) & =\left(Q R^{\prime}-R Q^{\prime}\right)_{x}+\left(R P^{\prime}-P R^{\prime}\right)_{y}+\left(P Q^{\prime}-Q P^{\prime}\right)_{z} \\
& =Q_{x} R^{\prime}+Q R_{x}^{\prime}-R_{x} Q^{\prime}-R Q_{x}^{\prime}+R_{y} P^{\prime}+R P_{y}^{\prime}-P_{y} R^{\prime}-P R_{y}^{\prime}+P_{z} Q^{\prime}+P Q_{z}^{\prime}-Q_{z} P^{\prime}-Q P_{z}^{\prime} \\
& =P^{\prime}\left(R_{y}-Q_{z}\right)+Q^{\prime}\left(P_{z}-R_{x}\right)+R^{\prime}\left(Q_{x}-P_{y}\right)-P\left(R_{y}^{\prime}-Q_{z}^{\prime}\right)-Q\left(P_{z}^{\prime}-R_{x}^{\prime}\right)-R\left(Q_{x}^{\prime}-P_{y}^{\prime}\right) \\
& =\vec{G} \cdot(\nabla \times \vec{F})-\vec{F} \cdot(\nabla \times \vec{G}) .
\end{aligned}
$$

6. $\nabla \cdot(\nabla f \times \nabla g)=0$

Solution: This follows from the previous identity (taking $\vec{F}=\nabla f$ and $\vec{G}=\nabla g$) and the fact that $\nabla \times(\nabla f)=\nabla \times(\nabla g)=0$.
7. $\nabla \times(\nabla \times \vec{F}))=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$

Solution: We again work component-by-component. Note

$$
\nabla \times \vec{F}=\left(R_{y}-Q_{z}\right) \vec{i}+\left(P_{z}-R_{x}\right) \vec{j}+\left(Q_{x}-P_{y}\right) \vec{k},
$$

so

$$
\begin{aligned}
(\nabla \times(\nabla \times \vec{F})) \cdot \vec{i} & =\left(Q_{x}-P_{y}\right)_{y}-\left(P_{z}-R_{x}\right)_{z} \\
& =Q_{x y}-P_{y y}-P_{z z}+R_{x z} \\
& =\left(P_{x x}+Q_{x y}+R_{x z}\right)-\left(P_{x x}+P_{y y}+P_{z z}\right) \\
& =\left(P_{x}+Q_{y}+R_{z}\right)_{x}-\left(P_{x x}+P_{y y}+P_{z z}\right) \\
& =(\nabla(\nabla \cdot \vec{F})) \cdot \vec{i}-\left(\nabla^{2} \vec{F}\right) \cdot \vec{i} \\
& =\left(\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}\right) \cdot \vec{i} .
\end{aligned}
$$

Similar arguments show the identity also holds in the \vec{j} and \vec{k} components, proving the identity.

3 Challenge

Suppose you are given a pair of (infinitely differentiable) vector fields \vec{E} and \vec{B} in \mathbb{R}^{3} in \mathbb{R}^{3}, and consider each vector field as additionally varying with respect to a variable t (in addition to the variables x, y, and z for \mathbb{R}^{3}). Suppose furthermore that these vector fields satisfy the "Maxwell equations in vacuum:"

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

for some constant $c^{2}>0$. Prove that these vector fields satisfy the "wave equations"

$$
\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \quad \nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

Here $\nabla^{2} \vec{E}$ is the vector Laplacian

$$
\nabla^{2} \vec{E}=\frac{\partial^{2} \vec{E}}{\partial x^{2}}+\frac{\partial^{2} \vec{E}}{\partial y^{2}}+\frac{\partial^{2} \vec{E}}{\partial z^{2}}
$$

and $\nabla^{2} \vec{B}$ is defined similarly (with \vec{E} replaced by \vec{B}).
By completing this exercise, you are showing that the fundamental laws of electrodynamics suggest the possibility of electromagnetic waves, i.e. light. Fiat lux!

Solution: Problem 7 from Section 2 above shows that

$$
\nabla^{2} \vec{E}=\nabla(\nabla \cdot \vec{E})-\nabla \times(\nabla \times \vec{E})
$$

Substituting in the equations for $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ here gives

$$
\nabla^{2} \vec{E}=0-\nabla \times\left(-\frac{\partial \vec{B}}{\partial t}\right)=\nabla \times \frac{\partial \vec{B}}{\partial t}
$$

By Clairaut's theorem, we can replace this with

$$
\nabla^{2} \vec{E}=\frac{\partial}{\partial t}(\nabla \times \vec{B})
$$

Substituting in the equation for $\nabla \times \vec{B}$ gives

$$
\nabla^{2} \vec{E}=\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}\right)=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

The proof of the wave equation for \vec{B} is similar.

4 True/False

Supply convincing reasoning for your answer. Assume all functions are infinitely differentiable unless stated otherwise.
(a) T F For every vector field \vec{F} on \mathbb{R}^{3}, we have $\nabla \cdot(\nabla \times \vec{F})=0$.

Solution: TRUE. This follows by a direct computation in the same vein as those in Section 2 above.
(b) T F The divergence of a vector field is a scalar function, while the curl of a vector field is a vector field.
Solution: TRUE. This is immediate from the definitions.
(c) T F Every vector field \vec{F} on \mathbb{R}^{3} arises as the curl of some vector field \vec{G}.

Solution: FALSE. Because $\nabla \cdot(\nabla \times \vec{G})=0$ for all \vec{G}, we see that we must have $\nabla \cdot \vec{F}=0$, which does not hold for all \vec{F}.
(d) T F Every function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ arises as the divergence of some vector field \vec{F}.

Solution: TRUE. For example, if we define

$$
g(x, y, z)=\int_{0}^{x} f(t, y, z) d t
$$

then f is the divergence of the vector field $\vec{F}=\langle g, 0,0\rangle$ (by the fundamental theorem of calculus).

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

