
Discussion 16 Worksheet Answers
Conservative vector fields and Green’s theorem
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MATH 53 Multivariable Calculus

1 Conservative Vector Fields

For each of the following vector fields ~F , either prove that ~F is conservative by finding a function
f such that ∇f = ~F , or prove that f is not conservative. We can now do this systematically as
showed in lecture.

1. ~F (x, y) = (xy + y2)~i+ (x2 + 2xy)~j

Solution: This is not conservative because

∂

∂y
(xy + y2) = x+ 2y 6= 2x+ 2y =

∂

∂x
(x2 + 2xy).

2. ~F (x, y) = y2exy~i+ (1 + xy)exy~j

Solution: This is conservative.

∂

∂y
y2exy = 2yexy + xy2exy = yexy + (y + xy2)exy =

∂

∂x
(1 + xy)exy

and the domain is R2 which is open and simply connected. So ∃f such that ~F = ∇f .
So fx = y2exy and fy = (1 + xy)exy. Integrating the first expression gives us f(x, y) =
yexy + g(y) and differentiating gives us (1 + xy)exy = fy = (1 + xy)exy + g′(y) so
g(y) = C ∈ R. Hence f(x, y) = yexy + C.

3. ~F (x, y, z) = yz~i+ xz~j + xy~k

Solution: This is conservative. The potential is f(x, y, z) = xyz + C

2 Apply FTL

Find a function f such that ~F = ∇f and use that to evaluate
∫
C
~F ◦ d~r along the curve C.

1. ~F (x, y) = x2y3~i+ x3y2~j and C : ~r(t) = 〈t3 − 2t, t3 + 2t〉, 0 ≤ t ≤ 1.

Solution: We see that f(x, y) = x3y3/3 works as a potential function. Then the start
and end point of C is (0, 0) and (−1, 3), respectively. Thus,∫

C

~F ◦ d~r =

∫
C
∇f ◦ d~r = f(−1, 3)− f(0, 0) = −9.
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2. ~F (x, y) = 〈yz, xz, xy + 2z〉 and C is the line segment from (1, 0,−2) to (4, 6, 3).

Solution: We see that fx = yz so f = xyz + g(y, z). Then xz + gy(y, z) = fy = xz
so gy(y, z) = 0. This implies g(y, z) = h(z). Then xy + h′(z) = fz = xy + 2z so
h(z) = z2 + C for C ∈ R. By FTL, the line integral evaluates to

f(4, 6, 3)− f(1, 0,−2) = (4)(6)(3) + (3)2 + C − (1)(0)(−2)− (−2)2 − C = 81− 4 = 77.

3. ~F (x, y, z) = 〈yzexz, exz, xyexz and C : ~r(t) = 〈t2 + 1, t2 − 1, t2 − 2t〉, 0 ≤ t ≤ 2.

Solution: It is easy to see that f(x, y, z) = yexz is a potential function so the line
integral evaluates to

f(5, 3, 0)− f(1,−1, 0) = 3− (−1) = 4.

3 More on line integrals

1. Show that the line integral is independent of path and evaluate it.
∫
C 2xe−ydx+(2y−x2e−y)dy

and C is any path from (1, 0) to (2, 1).

Solution: The two functions have continuous partial derivatives on R2 and

∂

∂y
(2xe−y) = −2xe−y =

∂

∂x
(2y − x2e−y)

so the vector field with these functions as its components is conservative and hence
the line integral is independent of path. It is easy to see that a potential function is
f(x, y) = x2e−y + y2 by running through the process as used in problems above. Then∫

C
2xe−ydx+ (2y − x2e−y)dy = f(2, 1)− f(1, 0) = 4/e+ 1− 1 = 4/e.

2. Find the work done by the force field ~F = 〈x3, y3〉 in moving an object from (1, 0) to (2, 2).

Solution: We see that ∂
∂y (x3) = 0 = ∂

∂x(y3) so there is a potential function for this

vector field. The potential function turns out to be f(x, y) = x4/4 + y4/4 + C where
C ∈ R. We can take C = 0. Thus

W =

∫
C

~F ◦ d~r = f(2, 2)− f(1, 0) = 31/4.

4 Challenge

1. Consider the vector field

~F (x, y) =

〈
− y

x2 + y2
,

x

x2 + y2

〉
.

First show that ∂P/∂y = ∂Q/∂x. Then show that
∫
C
~F ◦d~r is not independent of path. Does

this contradict what we saw in lecture?
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Solution: Firstly,
∂P

∂y
=

y2 − x2

(x2 + y2)2
=
∂Q

∂x
.

Consider the two curves C1 : ~r(t) = 〈cos t, sin t, 0 ≤ t ≤ π and C2 : ~r(t) =
〈cos t, sin t, 2π ≤ t ≤ π. Then∫

C1

~F ◦ d~r =

∫ π

0
〈− sin t, cos t〉 ◦ 〈− sin t, cos t〉dt =

∫ π

0
dt = π

and
∫
C2

~F ◦ d~r =
∫ π
2π dt = −π. Since these aren’t equal, the line integral of F isn’t

independent of path. This doesn’t contradict what we learned in class since the domain
of ~F is R2\{(0, 0} isn’t simply connected.

5 Line Integrals to Double Integrals

Use Green’s theorem to convert each of the following line integrals
∫
C
~F ◦ d~r to double integrals.

Then evaluate. All curves C are oriented counterclockwise.

1. C is the ellipse x2 + y2/4 = 1 and ~F (x, y) = 〈2x− y, 3x+ 2y〉.

Solution: We have
∫
C
~F ◦ d~r =

∫∫
DQx − Py =

∫∫
D 4dxdy = 4 · area(D) = 8π. Here

and in all further solutions in this section, D is the region enclosed by C.

2. C is the circle x2 + y2 = 1 and ~F (x, y) = 1
3〈−y

3, x3〉.

Solution: By Green’s theorem, the line integral equals
∫∫
x2+y2≤1 x

2 + y2dxdy. This

integral is simplest in polar coordinates, where it becomes
∫ 1
0

∫ 2π
0 r3dθdr = π/2.

3. C is the triangle with vertices at (0, 0), (1, 0), (0, 1) and ~F (x, y) = 〈x2y, ey2 + x〉.

Solution: By Green’s theorem, the line integral equals
∫∫
D 1 − x2dxdy. Firstly,∫∫

D dxdy = 1/2. Next, ∫∫
D
x2dxdy =

∫ 1

0

∫ 1−y

0
x2dxdy = 1/12,

so altogether, the integral is 1/2− 1/12 = 5/12.

6 More on Green’s Theorem

1. Let C be a simple, positively oriented, closed curve in R2. Using Green’s theorem, check that∫
C f(x)dx + g(y)dy = 0 for arbitrary smooth functions f, g. Can you give an explanation

without Green’s theorem?
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Solution: The line integral is zero by Green’s theorem since Qx − Py = 0 in this
situation. Without Green’s theorem, let ~r(t) = 〈x(t), y(t)〉 be a parameterization of C,
with 0 ≤ t ≤ T.
Then,

∫
C f(x)dx =

∫ T
0 f(x(t))x′(t)dt. With the substitution u = x(t), we see that this

integral is zero, since x(0) = x(T ). The same is true for the other half of the integral.
Alternatively, note that 〈f(x), g(y)〉 is conservative, since you may integrate each com-
ponent separately to find a potential.

2. Consider the non-standard parameterization of the unit circle x = sin(t), y = cos(t) with
0 ≤ t ≤ 2π. Check that

∫
C xdy is not the area enclosed by C, as “promised” by Green’s

Theorem. What went wrong?

Solution: We have
∫
C xdy =

∫ 2π
0 − sin2(t)dt = −π but the area enclosed by C is π.

The problem is that this parameterization of the unit circle is oriented clockwise and
Green’s theorem requires a counterclockwise orientation. Reversing the direction of a
path negates a line integral over that path.

3. Let C be the square centered at the origin with side length 4, oriented counterclockwise.
Compute

∫
C
−y

x2+y2
dx+ x

x2+y2
dy.

Hint: Recall that the vector field 〈P,Q〉 = 〈 −y
x2+y2

, x
x2+y2

〉 satisfies Py = Qx but is not conser-

vative because
∫
γ Pdx+Qdy = 2π where γ is the unit circle, oriented counterclockwise.

Solution: If D is the region between C and γ, then
∫
DQx − Pydxdy = 0 since the

integrand is zero, so 0 =
∫
C
−y

x2+y2
dx+ x

x2+y2
dy−

∫
γ
−y

x2+y2
dx+ x

x2+y2
dy, so we find that

the desired integral is 2π.

4. Let ~F be the vector field in the previous problem. Explain why, using Green’s theorem, if C is
a simple positively oriented curve contained in the upper half plane y > 0, then

∫
C
~F ◦d~r = 0.

Solution: Since C is a simple curve in the upper half plane, it bounds a region in the
upper half plane, where the vector field is defined (since (x, y) 6= (0, 0)). Using the fact
that Qx = Py for this vector field, Green’s theorem tells us that

∫
C
~F ◦ d~r = 0. In fact,

the hypothesis that C is simple is not needed.

7 True/False

(a) T F If the vector field ~F = 〈P,Q,R〉 is conservative and the components have continuous first-
order partial derivatives then

∂P

∂y
=
∂Q

∂x

∂P

∂z
=
∂R

∂x

∂Q

∂z
=
∂R

∂y
.

Solution: True. Since the components have continuous first-order partial derivatives
and the vector field is conservative, by Clairaut’s theorem we have ∂P

∂y = fxy = fyx = ∂Q
∂x

and similarly for the other identities.

(b) T F You’re asked to find the curve that requires the least work for the force field ~F to a move a
particle from point to another point. You find that ~F is conservative. Then there a unique
path satisfying this request.
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Solution: False. The vector field being conservative means the work integral is path
independent so any path from one of those points to the other will suffice.

(c) T F The line integral
∫
C ydx+ xdy + xyzdz is path independent.

Solution: False. Using the first T/F question we see that ∂P/∂z = 0 6= yz = ∂R/∂x
so the vector field 〈y, x, xyz〉 is not conservative so the integral is not path independent.

(d) T F The following vector field is conservative.

Solution: False. We know if the vector field is conservative then any line integral
along a closed path will be zero. If we take C to be unit circle centered at the origin
oriented ccw. All of the vector fields that start on C are in the direction of the motion
along C so the line integral will be positive. Hence the vector field is not conservative.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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