Discussion 16 Worksheet Answers Conservative vector fields and Green's theorem

Date: 10/29/2021
MATH 53 Multivariable Calculus

1 Conservative Vector Fields

For each of the following vector fields \vec{F}, either prove that \vec{F} is conservative by finding a function f such that $\nabla f=\vec{F}$, or prove that f is not conservative. We can now do this systematically as showed in lecture.

1. $\vec{F}(x, y)=\left(x y+y^{2}\right) \vec{i}+\left(x^{2}+2 x y\right) \vec{j}$

Solution: This is not conservative because

$$
\frac{\partial}{\partial y}\left(x y+y^{2}\right)=x+2 y \neq 2 x+2 y=\frac{\partial}{\partial x}\left(x^{2}+2 x y\right)
$$

2. $\vec{F}(x, y)=y^{2} e^{x y} \vec{i}+(1+x y) e^{x y} \vec{j}$

Solution: This is conservative.

$$
\frac{\partial}{\partial y} y^{2} e^{x y}=2 y e^{x y}+x y^{2} e^{x y}=y e^{x y}+\left(y+x y^{2}\right) e^{x y}=\frac{\partial}{\partial x}(1+x y) e^{x y}
$$

and the domain is \mathbb{R}^{2} which is open and simply connected. So $\exists f$ such that $\vec{F}=\nabla f$. So $f_{x}=y^{2} e^{x y}$ and $f_{y}=(1+x y) e^{x y}$. Integrating the first expression gives us $f(x, y)=$ $y e^{x y}+g(y)$ and differentiating gives us $(1+x y) e^{x y}=f_{y}=(1+x y) e^{x y}+g^{\prime}(y)$ so $g(y)=C \in \mathbb{R}$. Hence $f(x, y)=y e^{x y}+C$.
3. $\vec{F}(x, y, z)=y z \vec{i}+x z \vec{j}+x y \vec{k}$

Solution: This is conservative. The potential is $f(x, y, z)=x y z+C$

2 Apply FTL

Find a function f such that $\vec{F}=\nabla f$ and use that to evaluate $\int_{C} \vec{F} \circ d \vec{r}$ along the curve C.

1. $\vec{F}(x, y)=x^{2} y^{3} \vec{i}+x^{3} y^{2} \vec{j}$ and $C: \vec{r}(t)=\left\langle t^{3}-2 t, t^{3}+2 t\right\rangle, 0 \leq t \leq 1$.

Solution: We see that $f(x, y)=x^{3} y^{3} / 3$ works as a potential function. Then the start and end point of C is $(0,0)$ and $(-1,3)$, respectively. Thus,

$$
\int_{C} \vec{F} \circ d \vec{r}=\int_{C} \nabla f \circ d \vec{r}=f(-1,3)-f(0,0)=-9 .
$$

2. $\vec{F}(x, y)=\langle y z, x z, x y+2 z\rangle$ and C is the line segment from $(1,0,-2)$ to $(4,6,3)$.

Solution: We see that $f_{x}=y z$ so $f=x y z+g(y, z)$. Then $x z+g_{y}(y, z)=f_{y}=x z$ so $g_{y}(y, z)=0$. This implies $g(y, z)=h(z)$. Then $x y+h^{\prime}(z)=f_{z}=x y+2 z$ so $h(z)=z^{2}+C$ for $C \in \mathbb{R}$. By FTL, the line integral evaluates to
$f(4,6,3)-f(1,0,-2)=(4)(6)(3)+(3)^{2}+C-(1)(0)(-2)-(-2)^{2}-C=81-4=77$.
3. $\vec{F}(x, y, z)=\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right.$ and $C: \vec{r}(t)=\left\langle t^{2}+1, t^{2}-1, t^{2}-2 t\right\rangle, 0 \leq t \leq 2$.

Solution: It is easy to see that $f(x, y, z)=y e^{x z}$ is a potential function so the line integral evaluates to

$$
f(5,3,0)-f(1,-1,0)=3-(-1)=4 .
$$

3 More on line integrals

1. Show that the line integral is independent of path and evaluate it. $\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right) d y$ and C is any path from $(1,0)$ to $(2,1)$.
Solution: The two functions have continuous partial derivatives on \mathbb{R}^{2} and

$$
\frac{\partial}{\partial y}\left(2 x e^{-y}\right)=-2 x e^{-y}=\frac{\partial}{\partial x}\left(2 y-x^{2} e^{-y}\right)
$$

so the vector field with these functions as its components is conservative and hence the line integral is independent of path. It is easy to see that a potential function is $f(x, y)=x^{2} e^{-y}+y^{2}$ by running through the process as used in problems above. Then

$$
\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right) d y=f(2,1)-f(1,0)=4 / e+1-1=4 / e
$$

2. Find the work done by the force field $\vec{F}=\left\langle x^{3}, y^{3}\right\rangle$ in moving an object from $(1,0)$ to $(2,2)$.

Solution: We see that $\frac{\partial}{\partial y}\left(x^{3}\right)=0=\frac{\partial}{\partial x}\left(y^{3}\right)$ so there is a potential function for this vector field. The potential function turns out to be $f(x, y)=x^{4} / 4+y^{4} / 4+C$ where $C \in \mathbb{R}$. We can take $C=0$. Thus

$$
W=\int_{C} \vec{F} \circ d \vec{r}=f(2,2)-f(1,0)=31 / 4 .
$$

4 Challenge

1. Consider the vector field

$$
\vec{F}(x, y)=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

First show that $\partial P / \partial y=\partial Q / \partial x$. Then show that $\int_{C} \vec{F} \circ d \vec{r}$ is not independent of path. Does this contradict what we saw in lecture?

Solution: Firstly,

$$
\frac{\partial P}{\partial y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial Q}{\partial x} .
$$

Consider the two curves $C_{1}: \vec{r}(t)=\left\langle\cos t, \sin t, 0 \leq t \leq \pi\right.$ and $C_{2}: \vec{r}(t)=$ $\langle\cos t, \sin t, 2 \pi \leq t \leq \pi$. Then

$$
\int_{C_{1}} \vec{F} \circ d \vec{r}=\int_{0}^{\pi}\langle-\sin t, \cos t\rangle \circ\langle-\sin t, \cos t\rangle d t=\int_{0}^{\pi} d t=\pi
$$

and $\int_{C_{2}} \vec{F} \circ d \vec{r}=\int_{2 \pi}^{\pi} d t=-\pi$. Since these aren't equal, the line integral of F isn't independent of path. This doesn't contradict what we learned in class since the domain of \vec{F} is $\mathbb{R}^{2} \backslash\{(0,0\}$ isn't simply connected.

5 Line Integrals to Double Integrals

Use Green's theorem to convert each of the following line integrals $\int_{C} \vec{F} \circ d \vec{r}$ to double integrals. Then evaluate. All curves C are oriented counterclockwise.

1. C is the ellipse $x^{2}+y^{2} / 4=1$ and $\vec{F}(x, y)=\langle 2 x-y, 3 x+2 y\rangle$.

Solution: We have $\int_{C} \vec{F} \circ d \vec{r}=\iint_{D} Q_{x}-P_{y}=\iint_{D} 4 d x d y=4 \cdot \operatorname{area}(\mathrm{D})=8 \pi$. Here and in all further solutions in this section, D is the region enclosed by C.
2. C is the circle $x^{2}+y^{2}=1$ and $\vec{F}(x, y)=\frac{1}{3}\left\langle-y^{3}, x^{3}\right\rangle$.

Solution: By Green's theorem, the line integral equals $\iint_{x^{2}+y^{2} \leq 1} x^{2}+y^{2} d x d y$. This integral is simplest in polar coordinates, where it becomes $\int_{0}^{1} \int_{0}^{2 \pi} r^{3} d \theta d r=\pi / 2$.
3. C is the triangle with vertices at $(0,0),(1,0),(0,1)$ and $\vec{F}(x, y)=\left\langle x^{2} y, e^{y^{2}}+x\right\rangle$.

Solution: By Green's theorem, the line integral equals $\iint_{D} 1-x^{2} d x d y$. Firstly, $\iint_{D} d x d y=1 / 2$. Next,

$$
\iint_{D} x^{2} d x d y=\int_{0}^{1} \int_{0}^{1-y} x^{2} d x d y=1 / 12
$$

so altogether, the integral is $1 / 2-1 / 12=5 / 12$.

6 More on Green's Theorem

1. Let C be a simple, positively oriented, closed curve in \mathbb{R}^{2}. Using Green's theorem, check that $\int_{C} f(x) d x+g(y) d y=0$ for arbitrary smooth functions f, g. Can you give an explanation without Green's theorem?

Solution: The line integral is zero by Green's theorem since $Q_{x}-P_{y}=0$ in this situation. Without Green's theorem, let $\vec{r}(t)=\langle x(t), y(t)\rangle$ be a parameterization of C, with $0 \leq t \leq T$.
Then, $\overline{\int_{C}} f(x) d x=\int_{0}^{T} f(x(t)) x^{\prime}(t) d t$. With the substitution $u=x(t)$, we see that this integral is zero, since $x(0)=x(T)$. The same is true for the other half of the integral. Alternatively, note that $\langle f(x), g(y)\rangle$ is conservative, since you may integrate each component separately to find a potential.
2. Consider the non-standard parameterization of the unit circle $x=\sin (t), y=\cos (t)$ with $0 \leq t \leq 2 \pi$. Check that $\int_{C} x d y$ is not the area enclosed by C, as "promised" by Green's Theorem. What went wrong?
Solution: We have $\int_{C} x d y=\int_{0}^{2 \pi}-\sin ^{2}(t) d t=-\pi$ but the area enclosed by C is π. The problem is that this parameterization of the unit circle is oriented clockwise and Green's theorem requires a counterclockwise orientation. Reversing the direction of a path negates a line integral over that path.
3. Let C be the square centered at the origin with side length 4 , oriented counterclockwise. Compute $\int_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$.
Hint: Recall that the vector field $\langle P, Q\rangle=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ satisfies $P_{y}=Q_{x}$ but is not conservative because $\int_{\gamma} P d x+Q d y=2 \pi$ where γ is the unit circle, oriented counterclockwise.

Solution: If D is the region between C and γ, then $\int_{D} Q_{x}-P_{y} d x d y=0$ since the integrand is zero, so $0=\int_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y-\int_{\gamma} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$, so we find that the desired integral is 2π.
4. Let \vec{F} be the vector field in the previous problem. Explain why, using Green's theorem, if C is a simple positively oriented curve contained in the upper half plane $y>0$, then $\int_{C} \vec{F} \circ d \vec{r}=0$.
Solution: Since C is a simple curve in the upper half plane, it bounds a region in the upper half plane, where the vector field is defined (since $(x, y) \neq(0,0))$. Using the fact that $Q_{x}=P_{y}$ for this vector field, Green's theorem tells us that $\int_{C} \vec{F} \circ d \vec{r}=0$. In fact, the hypothesis that C is simple is not needed.

7 True/False

(a) T F If the vector field $\vec{F}=\langle P, Q, R\rangle$ is conservative and the components have continuous firstorder partial derivatives then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x} \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} .
$$

Solution: True. Since the components have continuous first-order partial derivatives and the vector field is conservative, by Clairaut's theorem we have $\frac{\partial P}{\partial y}=f_{x y}=f_{y x}=\frac{\partial Q}{\partial x}$ and similarly for the other identities.
(b) T F You're asked to find the curve that requires the least work for the force field \vec{F} to a move a particle from point to another point. You find that \vec{F} is conservative. Then there a unique path satisfying this request.

Solution: False. The vector field being conservative means the work integral is path independent so any path from one of those points to the other will suffice.
(c) T F The line integral $\int_{C} y d x+x d y+x y z d z$ is path independent.

Solution: False. Using the first T/F question we see that $\partial P / \partial z=0 \neq y z=\partial R / \partial x$ so the vector field $\langle y, x, x y z\rangle$ is not conservative so the integral is not path independent.
(d) T F The following vector field is conservative.

Solution: False. We know if the vector field is conservative then any line integral along a closed path will be zero. If we take C to be unit circle centered at the origin oriented ccw. All of the vector fields that start on C are in the direction of the motion along C so the line integral will be positive. Hence the vector field is not conservative.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

