Discussion 14 Worksheet Answers Spherical coordinates and general changes of variables

Date: 10/20/2021

MATH 53 Multivariable Calculus

1 Spherical coordinates

1. Solve for ρ, ϕ, θ in terms of x, y, z. That is, find the inverse of the spherical coordinate mapping. Warning: you may need casework.
Solution: First of all $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ by the Pythagorean theorem. Next, $\cos \phi=$ $z / \rho=z / \sqrt{x^{2}+y^{2}+z^{2}}$ and we get $\phi=\arccos \left(z / \sqrt{x^{2}+y^{2}+z^{2}}\right)$.
Finally, $\tan (\theta)=y / x$ as long as $x \neq 0$. So, if (x, y) is in the first quadrant, then $\theta=\arctan (y / x)$. If (x, y) is in the second or third quadrant, then $\theta=\arctan (y / x)+\pi$ and if (x, y) is in the fourth quadrant, then $\theta=\arctan (y / x)+2 \pi$
If $x=0$, then θ will be $\pi / 2$ or $3 \pi / 2$ according to whether $y>0$ or $y<0$. There is no well-defined angle θ when $x=y=0$.
2. Describe the following surfaces (defined by Cartesian coordinates) in terms of spherical coordinates).

$$
x=\sqrt{3} y .
$$

Solution: This is equivalent to $\theta=\arctan (1 / \sqrt{3})=\pi / 6$ OR $\theta=7 \pi / 6$.

$$
z^{2}=x^{2}+y^{2} .
$$

Solution: By geometric reasoning, the answer is $\phi=\pi / 4$ or $\phi=3 \pi / 4$. This may also be done algebraically.

$$
x^{2}+y^{2}+z^{2} / 4=1 .
$$

Solution: By substitution, we get $\rho^{2} \sin ^{2} \phi+\rho^{2} \cos ^{2} \phi / 4=1$.
3. Find the volume of the region bounded by the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=1$.

Solution: The region enclosed is given by $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi / 3$ and $\sec \phi \leq \rho \leq 2$.
So, the volume is (using $\left.\sec ^{\prime}(\phi)=\sec \phi \tan \phi\right)$

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{\sec \phi}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \int_{0}^{\pi / 3} \frac{1}{3} \sin (\phi)\left(8-\sec ^{3}(\phi)\right) d \phi=5 \pi / 3
$$

4. Compute the following integral over the region R lying above the cone $z^{2}=x^{2}+y^{2}$ and below the unit sphere

$$
\iiint_{R} z^{2} d V
$$

Solution: The region is described by $0 \leq \rho \leq 1,0 \leq \phi \leq \pi / 4$ and $0 \leq \pi \leq 2 \pi$, so

$$
\begin{align*}
\iiint_{R} z^{2} d V & =\int_{0}^{1} \int_{0}^{\pi / 4} \int_{0}^{2 \pi}(\rho \cos \phi)^{2} \sin \phi \rho^{2} d \theta d \phi d \rho \tag{1}\\
& =2 \pi \int_{0}^{1} \rho^{4} \int_{0}^{\pi / 4} \sin \phi \cos ^{2} \phi d \phi d \rho \tag{2}\\
& =\frac{2 \pi}{5} \frac{1}{12}(4-\sqrt{2})=\frac{\pi}{60}(4-\sqrt{2}) \tag{3}
\end{align*}
$$

5. Let d be a real number and consider the improper integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z d y d x}{\left.x^{2}+y^{2}+z^{2}\right)^{d}}
$$

For which values of d does this integral converge? Compute the integral for the values of d that make it converge.
Hint: As a first step, check that the region of integration is a sphere.
Solution: In spherical coordinates, this integral becomes

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \frac{1}{\rho^{2 d}} \rho^{2} \sin \phi d \rho d \phi d \theta=4 \pi \int_{0}^{1} \rho^{2-2 d} d \rho
$$

This limit exists and equals $\frac{4 \pi}{3-2 d}$ when $d<3 / 2$. Otherwise, the integral does not converge.

2 Calculating the Jacobian

Find the absolute value of the Jacobian determinant for each of the following changes of coordinates.

1. $x=a u+b v$ and $y=c u+d v$.

Solution: We take the determinant of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, which is $a d-b c$, so take absolute values to get $|a d-b c|$.
2. $x=u^{2}-v^{2}$ and $y=2 u v$.

Solution: We compute $\operatorname{det}\left(\begin{array}{cc}2 u & -2 v \\ 2 v & 2 u\end{array}\right)=4\left(u^{2}+v^{2}\right)$, which is non-negative, so we do not need absolute values.
3. $x=e^{u} \cos (v)$ and $y=e^{u} \sin (v)$.

Solution: We compute $\operatorname{det}\left(\begin{array}{cc}e^{u} \cos (v) & -e^{u} \sin (v) \\ e^{u} \sin (v) & e^{u} \cos (v)\end{array}\right)=e^{2 u}$. This is always positive.
4. $x=\frac{u}{u^{2}+v^{2}}$ and $y=\frac{-v}{u^{2}+v^{2}}$. Note that this transformation is its own inverse, in the sense that we can solve $u=\frac{x}{x^{2}+y^{2}}$ and $v=\frac{-y}{x^{2}+y^{2}}$. Also check that $\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)=1$.

Solution: We compute $\operatorname{det}\left(\begin{array}{cc}\frac{1}{u^{2}+v^{2}}-\frac{2 u^{2}}{\left(u^{2}+v^{2}\right)^{2}} & \frac{-2 u v}{\left(u^{2}+v^{2}\right)^{2}} \\ \frac{2 v^{2}}{\left(u^{2}+v^{2}\right)^{2}} & \frac{-1}{u^{2}+v^{2}}+\frac{2 v^{2}}{\left(u^{2}+v^{2}\right)^{2}}\end{array}\right)=\frac{1}{\left(u^{2}+v^{2}\right)^{2}}$, which, as before, is always positive.

3 Integrating with change of variables

1. Consider the region \mathcal{R} in the plane: $3 x^{2}+4 x y+3 y^{2} \leq 1$.

Describe the transformed region using the change of variables $x=v-u$ and $y=u+v$.
Find the area of \mathcal{R}.
Solution: We have $3(v-u)^{2}+4\left(v^{2}-u^{2}\right)+3(u+v)^{2}=2 u^{2}+10 v^{2} \leq 1$. This is an ellipse with axes of length $1 / \sqrt{2}$ and $1 / \sqrt{10}$, so has area $\pi / \sqrt{20}$. The Jacobian of this transformation is 2 .
Now, $A=\int_{\mathcal{R}} d x d y=\int_{\mathcal{R}^{\prime}} 2 d u d v=2 \pi / \sqrt{20}=\pi / \sqrt{5}$, where \mathcal{R}^{\prime} is the ellipse in the $u v$-plane.
2. Let D be the annulus $1 \leq x^{2}+y^{2} \leq 4$ and consider the integral

$$
\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} e^{\frac{x}{x^{2}+y^{2}}} d x d y
$$

Perform the change of variables $x=\frac{u}{u^{2}+v^{2}}, y=\frac{-v}{u^{2}+v^{2}}$ to simplify the integral, but do not evaluate.
Solution: From our work on this substitution in the first problem, we know that the new region of integration is $D^{\prime}: 1 / 4 \leq u^{2}+v^{2} \leq 1$ and the integral becomes

$$
\iint_{D^{\prime}}\left(u^{2}+v^{2}\right)^{2} e^{u} \frac{1}{\left(u^{2}+v^{2}\right)^{2}} d u d v=\iint_{D^{\prime}} e^{u} d u d v .
$$

4 True/False

Supply convincing reasoning for your answer.
(a) T F If the Jacobian of a transformation $x=x(u, v), y=y(u, v)$ is always non-zero, then the transformation is one-to-one.
Solution: False: Consider the transformation $x=u^{2}-v^{2}, y=2 u v$, defined on the whole $u v$-plane except for the point $u=v=0$. The Jacobian is positive, but $(1,1)$ and $(-1,-1)$ map to the same point.
(b) T F The image of a rectangle in the plane under the transformation $x=2 u, y=-2 v$ will be another rectangle.
Solution: True: Scaling a rectangle by a factor of 2 and reflecting will result in another rectangle.
(c) T F There is a point with spherical coordinates $\rho=1 / 2, \phi=3 \pi / 2, \theta=\pi / 2$.

Solution: False: The angle ϕ can be at most π (otherwise points will be doublecounted).
(d) T F The " ρ " in spherical coordinates equals the " r " in cylindrical coordinates.

Solution: False: ρ represents the distance from the origin, while r represents the distance from the z-axis.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

