Discussion 13 Worksheet Answers

Double integrals in polar coordinates and surface areas of graphs
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1 Double integral practice

Compute these integrals:

a) [[pxcosydA where D is bounded by y = 0,y = 22,z = 1;
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Solution: fol Jo xcosydydr = folxsiny|§2d:1: = folwsinm2d$ = —1cos(z?)|} =

(1 —cos1).

I p 2x — ydA where D is bounded by the circle with center at the origin and radius 2.

Solution: f f =2 — ydydx = f_22 2xy — %]_V %dw = f_22 dxv/4—a22 =0

since 4xv4 — x2 is an odd function.

Find the volume of the solid under the surface z = zy and above the triangle with vertices
(1,1),(4,1),(1,2).

Solution: After finding the equations bounding this triangle, we set up the integral
and solve. The bounding lines are x = 1,y = 1,z + 3y = 7 so the volume is
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Find the volume exnclosed by the cylinders z = 22,y = 22 and the planes z = 0 and y = 4.

Solution: The set up is fi fjg r?dydr = fi 422 — 2idx = %.

Find the volume of the solid by subtracting two volumes. The solid is enclosed by the parabolic
cylinders y =1 — 22,y = 22 — 1 and the planes x +y + 2z = 2,22 + 2y — 2 + 10 = 0.

Solution: The region of integration is bounded by the curves y = 1 — 22,y = 22 — 1
which intersect at z = +1 with 1 — 22 > 22 — 1 on [~1,1]. Within this region,
z =2x 4 2y + 10 is above z = 2 — x — y so we have
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= / 3zy + §y2 + 8y|i§f§dm = / —623 — 1622 + 6x + 16dx = ?
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2 Polar Integration

Remember dA becomes rdrdf.

(a) [ D z2ydA where D is the top half of the disk with center the origin and radius 5;

Solution: The region is D = {(r,0) |0 <r <5,0 <60 <7}. Then
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(b) ffD e~ ~¥"dA where D is the region bounded by the semicircle z = /4 — y2? and the y-axis.

Solution:
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3 Surface Areas

Parametrize the following surfaces in an appropriate way (if they are not already parametrized)
and compute their normal vectors and area.

(a) The portion of the elliptic paraboloid z = 22 + y? lying over the unit disk.

Solution: This surface is the graph of f(z,y) = 2 4+ y?, so we know that

—

N = (1,0, fz) x (0,1, fy) = (= fo, = fy, 1) = (=22, —2y,1).

The area is computed by the following integral over the unit disk D, which we compute
in polar coordinates and using the substitution v = 1 + 472
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(b) The part of the surface z = xy that lies within the cylinder 22 + 3? = 1.

Solution: This is the graph of f(z,y) = xy, so

N = (—fo,—f, 1) = (y,z,1).

Restricting the surface to the part inside the cylinder corresponds to restricting the
domain of f to the unit disk D. The area of the surface is given by
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(The computation of the integral is analogous to problem [3.(a))).




4 Triple Integration

Change the order of integration for these integrals. Sketching the region of integration might be
helpful.

(a) Rewrite the integral
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as the equivalent iterated integral in the five other orders.

Solution: The diagrams show the projections of the solid onto the coordinate planes.
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z=1—\x or
x=(1—2z)?

Hence
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5 Challenge

(a) Find the volume of a right pyramid by setting up a triple integral. (Hint: Place 3 vertices on
the coordinate axes and the fourth at the origin and use the plane equation.)



Solution: Following the hint we can set up a generic plane containing the points
(a,0,0),(0,0,0),(0,0,c). The equation for this plane is given by z = ¢(1 — x/a — y/b).
Let D be the projection to the xy-plane defined by bz 4+ ay = ab. Then the volume is
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which is (1/3) times the area of base times the height.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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