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MATH 53 Multivariable Calculus

1 Double Integrals

Use geometric arguments to find the values of the following integrals.

1.
∫∫

[0,a]×[0,b] cdA where a, b, c are all real positive constants.

Solution: This is the volume of a rectangular prism with side lengths a, b, and c, so
the answer is abc.

2.
∫∫
x2+y2≤1

√
1− x2 − y2dA

Solution: This is the volume of the upper half-ball of the ball x2 + y2 + z2 ≤ 1. The
volume of a ball is (4/3)πR3, so our volume is (2/3)π.

3.
∫∫
x2+y2≤1(1−

√
x2 + y2)dA

Solution: This is the volume of a cone of height 1 and radius 1. The volume of a
cone is πrh/3, so our integral gives π/3.

4.
∫∫
|x|+|y|≤1(1− |x| − |y|)dA

Solution: This is a square pyramid with base side length
√

2 and height 1. The

volume of a square pyramid is bh/3, so our integral gives
√

2
2
/3 = 2/3.

2 Changing the order of integration

Change the order of integration for these integrals. Sketching the region of integration might be
helpful.

(a)

∫ 1

0

∫ y

0
f(x, y) dx dy

Solution: The region can be described by 0 ≤ y ≤ 1, 0 ≤ x ≤ 1 and x ≤ y, so it is
equivalent to 0 ≤ x ≤ 1, x ≤ y ≤ 1. Therefore the integral above is equal to∫ 1

0

∫ 1

x
f(x, y) dy dx.

(b)

∫ π/2

0

∫ cosx

0
f(x, y) dy dx
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Solution: 0 ≤ cosx ≤ 1 for 0 ≤ x ≤ π/2 so this region can be described by
0 ≤ x ≤ π/2, 0 ≤ y ≤ 1 and y ≤ cosx. We also know that arccos is an decreasing
function, i.e. for a < b we have arccos a > arccos b. Therefore this region is equivalent
to 0 ≤ y ≤ 1, 0 ≤ x arccos y and switching the order of integration gives∫ 1

0

∫ arccos y

0
f(x, y) dx dy.

(c)

∫ 2

1

∫ lnx

0
f(x, y) dy dx

Solution: The domain of integration is 1 ≤ x ≤ 2, 0 ≤ y ≤ ln 2, y ≤ lnx. The last
inequality is equivalent to ey ≤ x and so switching the order of integration gives∫ ln 2

0

∫ 2

ey
f(x, y) dx dy.

3 Double integral practice

Compute these integrals:

(a)

∫ 1

0

∫ v

0

√
1− v2 du dv

Solution: Evaluating the inner integral gives∫ 1

0
v
√

1− v2 dv =
1

2

∫ 1

0

√
s ds =

1

3
.

In the second step we used the substitution s = 1− v2, so ds = −2v dv.

(b)

∫∫
D
dA where D =

{
(x, y) | x2 + y2 ≤ 1

}
(You can know the answer before doing the

computation.)

Solution: This integral computes the area of D which is the unit circle, so we
already know that the answer is going to be π. For the actual computation we write
D = {(x, y) | −1 ≤ x ≤ 1,−

√
1− x2 ≤ y ≤

√
1− x2} as a region of type I, so the

integral becomes∫ 1

−1

∫ √1−x2
−
√
1−x2

1 dy dx =

∫ 1

−1
2
√

1− x2 dx = 2

∫ π/2

−π/2

√
1− sin2 φ cosφdφ

= 2

∫ π/2

−π/2
cos2 φdφ = π.

(c)

∫∫
D
x dA where D = {(x, y) | 0 ≤ x ≤ π, 0 ≤ y ≤ sinx}
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Solution: D is a type I region so we compute the integral as∫ π

0

∫ sinx

0
x dy dx =

∫ π

0
x sinx dx = − x cosx |π0 +

∫ π

0
cosx dx = π.

(d)

∫∫
D

(x+ y) dA where D is bounded by y =
√
x and y = x2

Solution: D is a type I region since the y-values lie between the graphs of two
function of x. To know the bounds for x we first need to find where the two graphs
intersect, i.e. solve

√
x = x2. Squaring both sides turns this into x2 = x4 or equivalently

x2(1− x2) = 0 which has solutions −1, 0, 1. Since
√
x is only defined for x ≥ 0 we see

that the graphs intersect at x = 0, 1, so these are our bounds for x. Now we compute
the double integral to be∫ 1

0

∫ √x
x2

(x+ y) dy dx =

∫ 1

0
x(
√
x− x2) +

1

2
(x− x4) dx =

2

5
− 1

4
+

1

4
− 1

10
=

3

10
.

(e)

∫ 1

0

∫ 4

4y
ex

2
dx dy

Solution: The function ex
2

has no antiderivative that we can express with familiar
functions so we try changing the order of integration. The domain of integration is
given by 0 ≤ y ≤ 1, 4y ≤ x ≤ 4, which can also be expressed as 0 ≤ y ≤ 1, 0 ≤ x ≤ 4
and 4y ≤ x. From this second form we see that the region is equivalent to 0 ≤ x ≤
4, 0 ≤ y ≤ x/4. Hence the integral can be computed as∫ 4

0

∫ x/4

0
ex

2
dy dx =

∫ 4

0

x

4
ex

2
dx =

∫ 16

0

1

8
es ds =

1

8

(
e16 − 1

)
.

We used the substitutions x2 = s.

(f)

∫ 1

0

∫ π/2

arcsin y
cosx

√
1 + cos2 x dx dy

Solution: The inner integral looks hard so we try switching the order of integration.
The region of integration is the rectangle [0, π/2] × [0, 1] with the extra constraint
arcsin y ≤ x, or equivalently y ≤ sinx. Hence our integral is equal to∫ π/2

0

∫ sinx

0
cosx

√
1 + cos2 x dy dx =

∫ π/2

0
sinx cosx

√
1 + cos2 x dx

=
1

2

∫ 1

0

√
1 + s ds

=
1

3

(
2
√

2− 1
)
.
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4 Challenge

Compute

I =

∫∫
D

√
1− x2 − y2 dA

where D is the unit circle without using polar coordinates or geometric arguments. What is the
solid whose volume we are computing here?

Solution: I is the volume of a hemisphere. To compute this we are going to need the
integral∫ a

−a

√
a2 − s2 ds =

∫ π/2

−π/2

√
a2 − a2 sin2 φa cosφdφ = a2

∫ π/2

−π/2
cos2 φdφ = a2

π

2

Here we did a substitution s = a sinφ. Now we can proceed to compute I:

I =

∫ 1

−1

∫ √1−x2
−
√
1−x2

√(√
1− x2

)2
− y2 dy dx

=

∫ 1

−1

π

2

(
1− x2

)
dx

=
π

2
(2− 2/3) =

2π

3
.

5 True/False

Supply convincing reasoning for your answer.

(a) T F If f : Rn → R is continuous, then f is the derivative of
∫∫

fdA.

Solution: FALSE. Although this is true for single-variable functions, it does not
even make sense for functions of several variables, because we don’t have a definition
for a single “derivative” of something like

∫∫
fdA.

(b) T F In some simple cases, computing double integrals reduces to computing the volumes of well-
known solids.

Solution: TRUE. For example, the double integrals in problem ?? above can be
computed using this method.

(c) T F

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx =

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy by Fubini’s theorem.

(Hint: d
dy

y
x2+y2

= x2−y2
(x2+y2)2

)

(Hint 2: I wouldn’t be giving the above hint if you didn’t have to compute the integrals...)
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Solution: FALSE. We compute the LHS:∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx =

∫ 1

0

y

x2 + y2

∣∣∣∣y=1

y=0

dx

=

∫ 1

0

1

1 + x2
dx

= arctan 1− arctan 0 = π/4

Now we compute the RHS:∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy =

∫ 1

0

−x
x2 + y2

∣∣∣∣x=1

x=0

dy

=

∫ 1

0

−1

1 + y2
dy

= − arctan 1 + arctan 0 = −π/4

What is this sorcery? Did Guido Fubini lie to us? No! We can’t apply Fubini’s theorem
here because the integrand becomes infinite around zero and therefore isn’t continuous
on [0, 1]× [0, 1].

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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