Discussion 12 Worksheet Answers Double integrals

Date: 10/11/2021

MATH 53 Multivariable Calculus

1 Double Integrals

Use geometric arguments to find the values of the following integrals.

1. $\iint_{[0, a] \times[0, b]} c d A$ where a, b, c are all real positive constants.

Solution: This is the volume of a rectangular prism with side lengths a, b, and c, so the answer is $a b c$.
2. $\iint_{x^{2}+y^{2} \leq 1} \sqrt{1-x^{2}-y^{2}} d A$

Solution: This is the volume of the upper half-ball of the ball $x^{2}+y^{2}+z^{2} \leq 1$. The volume of a ball is $(4 / 3) \pi R^{3}$, so our volume is $(2 / 3) \pi$.
3. $\iint_{x^{2}+y^{2} \leq 1}\left(1-\sqrt{x^{2}+y^{2}}\right) d A$

Solution: This is the volume of a cone of height 1 and radius 1 . The volume of a cone is $\pi r h / 3$, so our integral gives $\pi / 3$.
4. $\iint_{|x|+|y| \leq 1}(1-|x|-|y|) d A$

Solution: This is a square pyramid with base side length $\sqrt{2}$ and height 1 . The volume of a square pyramid is $b h / 3$, so our integral gives $\sqrt{2}^{2} / 3=2 / 3$.

2 Changing the order of integration

Change the order of integration for these integrals. Sketching the region of integration might be helpful.
(a) $\int_{0}^{1} \int_{0}^{y} f(x, y) d x d y$

Solution: The region can be described by $0 \leq y \leq 1,0 \leq x \leq 1$ and $x \leq y$, so it is equivalent to $0 \leq x \leq 1, x \leq y \leq 1$. Therefore the integral above is equal to

$$
\int_{0}^{1} \int_{x}^{1} f(x, y) d y d x .
$$

(b) $\int_{0}^{\pi / 2} \int_{0}^{\cos x} f(x, y) d y d x$

Solution: $0 \leq \cos x \leq 1$ for $0 \leq x \leq \pi / 2$ so this region can be described by $0 \leq x \leq \pi / 2,0 \leq y \leq 1$ and $y \leq \cos x$. We also know that arccos is an decreasing function, i.e. for $a<b$ we have $\arccos a>\arccos b$. Therefore this region is equivalent to $0 \leq y \leq 1,0 \leq x \arccos y$ and switching the order of integration gives

$$
\int_{0}^{1} \int_{0}^{\arccos y} f(x, y) d x d y .
$$

(c) $\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x$

Solution: The domain of integration is $1 \leq x \leq 2,0 \leq y \leq \ln 2, y \leq \ln x$. The last inequality is equivalent to $e^{y} \leq x$ and so switching the order of integration gives

$$
\int_{0}^{\ln 2} \int_{e^{y}}^{2} f(x, y) d x d y
$$

3 Double integral practice

Compute these integrals:
(a) $\int_{0}^{1} \int_{0}^{v} \sqrt{1-v^{2}} d u d v$

Solution: Evaluating the inner integral gives

$$
\int_{0}^{1} v \sqrt{1-v^{2}} d v=\frac{1}{2} \int_{0}^{1} \sqrt{s} d s=\frac{1}{3} .
$$

In the second step we used the substitution $s=1-v^{2}$, so $d s=-2 v d v$.
(b) $\iint_{D} d A$ where $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ (You can know the answer before doing the computation.)

Solution: This integral computes the area of D which is the unit circle, so we already know that the answer is going to be π. For the actual computation we write $D=\left\{(x, y) \mid-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}\right\}$ as a region of type I , so the integral becomes

$$
\begin{aligned}
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 d y d x & =\int_{-1}^{1} 2 \sqrt{1-x^{2}} d x=2 \int_{-\pi / 2}^{\pi / 2} \sqrt{1-\sin ^{2} \phi} \cos \phi d \phi \\
& =2 \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi d \phi=\pi .
\end{aligned}
$$

(c) $\iint_{D} x d A \quad$ where $D=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \sin x\}$

Solution: D is a type I region so we compute the integral as

$$
\int_{0}^{\pi} \int_{0}^{\sin x} x d y d x=\int_{0}^{\pi} x \sin x d x=-\left.x \cos x\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos x d x=\pi
$$

(d) $\iint_{D}(x+y) d A \quad$ where D is bounded by $y=\sqrt{x}$ and $y=x^{2}$

Solution: D is a type I region since the y-values lie between the graphs of two function of x. To know the bounds for x we first need to find where the two graphs intersect, i.e. solve $\sqrt{x}=x^{2}$. Squaring both sides turns this into $x^{2}=x^{4}$ or equivalently $x^{2}\left(1-x^{2}\right)=0$ which has solutions $-1,0,1$. Since \sqrt{x} is only defined for $x \geq 0$ we see that the graphs intersect at $x=0,1$, so these are our bounds for x. Now we compute the double integral to be

$$
\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(x+y) d y d x=\int_{0}^{1} x\left(\sqrt{x}-x^{2}\right)+\frac{1}{2}\left(x-x^{4}\right) d x=\frac{2}{5}-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}=\frac{3}{10} .
$$

(e) $\int_{0}^{1} \int_{4 y}^{4} e^{x^{2}} d x d y$

Solution: The function $e^{x^{2}}$ has no antiderivative that we can express with familiar functions so we try changing the order of integration. The domain of integration is given by $0 \leq y \leq 1,4 y \leq x \leq 4$, which can also be expressed as $0 \leq y \leq 1,0 \leq x \leq 4$ and $4 y \leq x$. From this second form we see that the region is equivalent to $0 \leq x \leq$ $4,0 \leq y \leq x / 4$. Hence the integral can be computed as

$$
\int_{0}^{4} \int_{0}^{x / 4} e^{x^{2}} d y d x=\int_{0}^{4} \frac{x}{4} e^{x^{2}} d x=\int_{0}^{16} \frac{1}{8} e^{s} d s=\frac{1}{8}\left(e^{16}-1\right) .
$$

We used the substitutions $x^{2}=s$.
(f) $\int_{0}^{1} \int_{\arcsin y}^{\pi / 2} \cos x \sqrt{1+\cos ^{2} x} d x d y$

Solution: The inner integral looks hard so we try switching the order of integration. The region of integration is the rectangle $[0, \pi / 2] \times[0,1]$ with the extra constraint $\arcsin y \leq x$, or equivalently $y \leq \sin x$. Hence our integral is equal to

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\sin x} \cos x \sqrt{1+\cos ^{2} x} d y d x & =\int_{0}^{\pi / 2} \sin x \cos x \sqrt{1+\cos ^{2} x} d x \\
& =\frac{1}{2} \int_{0}^{1} \sqrt{1+s} d s \\
& =\frac{1}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

4 Challenge

Compute

$$
I=\iint_{D} \sqrt{1-x^{2}-y^{2}} d A
$$

where D is the unit circle without using polar coordinates or geometric arguments. What is the solid whose volume we are computing here?

Solution: I is the volume of a hemisphere. To compute this we are going to need the integral

$$
\int_{-a}^{a} \sqrt{a^{2}-s^{2}} d s=\int_{-\pi / 2}^{\pi / 2} \sqrt{a^{2}-a^{2} \sin ^{2} \phi} a \cos \phi d \phi=a^{2} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi d \phi=a^{2} \frac{\pi}{2}
$$

Here we did a substitution $s=a \sin \phi$. Now we can proceed to compute I :

$$
\begin{aligned}
I & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{\left(\sqrt{1-x^{2}}\right)^{2}-y^{2}} d y d x \\
& =\int_{-1}^{1} \frac{\pi}{2}\left(1-x^{2}\right) d x \\
& =\frac{\pi}{2}(2-2 / 3)=\frac{2 \pi}{3}
\end{aligned}
$$

5 True/False

Supply convincing reasoning for your answer.
(a) T F If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, then f is the derivative of $\iint f d A$.

Solution: FALSE. Although this is true for single-variable functions, it does not even make sense for functions of several variables, because we don't have a definition for a single "derivative" of something like $\iint f d A$.
(b) T F In some simple cases, computing double integrals reduces to computing the volumes of wellknown solids.
Solution: TRUE. For example, the double integrals in problem ?? above can be computed using this method.
(c) T F $\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y d x=\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x d y$ by Fubini's theorem.
(Hint: $\frac{d}{d y} \frac{y}{x^{2}+y^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$)
(Hint 2: I wouldn't be giving the above hint if you didn't have to compute the integrals...)

Solution: FALSE. We compute the LHS:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y d x & =\left.\int_{0}^{1} \frac{y}{x^{2}+y^{2}}\right|_{y=0} ^{y=1} d x \\
& =\int_{0}^{1} \frac{1}{1+x^{2}} d x \\
& =\arctan 1-\arctan 0=\pi / 4
\end{aligned}
$$

Now we compute the RHS:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x d y & =\left.\int_{0}^{1} \frac{-x}{x^{2}+y^{2}}\right|_{x=0} ^{x=1} d y \\
& =\int_{0}^{1} \frac{-1}{1+y^{2}} d y \\
& =-\arctan 1+\arctan 0=-\pi / 4
\end{aligned}
$$

What is this sorcery? Did Guido Fubini lie to us? No! We can't apply Fubini's theorem here because the integrand becomes infinite around zero and therefore isn't continuous on $[0,1] \times[0,1]$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

