
Discussion 11 Worksheet Answers
Lagrange Multipliers

Date: 10/4/2021

MATH 53 Multivariable Calculus

1 Lagrange Multipliers

1. Find the extreme values of the function f(x, y) = 2x+ y + 2z subject to the constraint that
x2 + y2 + z2 = 1.

Solution: We solve the Lagrange multiplier equation: 〈2, 1, 2〉 = λ〈2x, 2y, 2z〉. Note
that λ cannot be zero in this equation, so the equalities 2 = 2λx, 1 = 2λy, 2 = 2λz are
equivalent to x = z = 2y. Substituting this into the constraint yields 4y2+y2+4y2 = 1,
so y = ±1/3. The max and min values occur at (2/3, 1/3, 2/3) and (−2/3,−1/3,−2/3),
respectively, with function values ±3.

2. Find the extreme values of the function f(x, y) = y2ex on the domain
{(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Solution: The gradient of this function is (y2ex, 2yex), which is zero along the x-axis
y = 0. Here the function value of 0 is a minimum, since f(x, y) ≥ 0 everywhere.
On the boundary we have the Lagrange multiplier equation: y2ex = 2λx and 2yex =
2λy. We may assume y 6= 0 as we have already considered this case, and then we get
2y = x/y, so y2 = 2x. Together with the equation x2 + y2 = 1, we obtain 2− x2 = 2x,
so x = ±

√
2− 1. We only need the ”+” solution because the ”-” one lies outside of the

unit disk. We know y2 = 2x = 2(
√

2− 1) and therefore the maximum value of f on the
unit disk is

f(
√

2− 1,±
√

2(
√

2− 1)) = 2(
√

2− 1)e
√
2−1

3. Use Lagrange multipliers to find the closest point(s) on the parabola y = x2 to the point
(0, 1). How could one solve this problem without using any multivariate calculus?

Solution: We maximize the function f(x, y) = x2 + (y− 1)2 subject to the constraint
g(x, y) = y − x2 = 0.
We obtain the system of equations

2x = −2λx

2(y − 1) = λ

Substituting the second equation into the first, we find 2x = −2(2(y − 1))x, so either
x = 0 or y = 1/2. In the first case, the point (0, 0) is distance 1 from (0, 1). In the
second case, (± 1√

2
, 1/2) is distance

√
1/2 + 1/4 =

√
3/4 < 1 from the point (0, 1).

These two points are the closest.
This problem could also be solved by minimizing the function

√
t2 + (t2 − 1)2.
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4. You have 24 square inches of cardboard and want to build a box (in the shape of a rectangular
prism). Show that a 2”× 2”× 2” cube encloses the largest volume.

Solution: If x, y, z are the side lengths of the solid, then we have a constraint xy +
yz + zx = 12 and want to optimize the function f(x, y, z) = xyz.
A maximum value must exist since the volume goes to zero if any of the side lengths
do.
We have yz = λ(y + z) and xz = λ(x + z) and xy = λ(x + y). Multiplying the first
equation by x and the second by y and equating, we get xλ(y + z) = xyz = yλ(x+ z).
All quantities are positive, so we may simplify to get x(y+z) = y(x+z), which simplifies
to x = y. Arguing similarly with the third equation, we find that all side lengths are
equal.

5. Find the largest possible volume of a rectangular prism with edges parallel to the coordinate
axes and all vertices lying on the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

(where a, b, c > 0.)

Solution: Let x, y, and z each be half of the side length pointing along the coordinate
axes. Then the volume of the prism is f(x, y, z) = 8xyz. We want to maximize this
subject to the constraint g = 1, where g(x, y, z) = x2/a2 +y2/b2 +z2/c2. Our Lagrange
multiplier equation ∇f = λ∇g becomes

8yz =
2λx

a2
, 8xz =

2λy

b2
, 8xy =

2λz

c2

If λ = 0 then at least one of x, y, and z must be zero, giving a total volume of zero. As
this is clearly not maximal, we can ignore this case and assume λ 6= 0. Multiplying the
first equation by x/2λ gives x2/a2 = xyz/2λ. Let k = xyz/2λ; then we are just saying
x2/a2 = k. Similarly, we obtain y2/b2 = z2/c2 = k. Plugging these into the equation
for the ellipse gives 3k = 1, so k = 1/3. Thus x = ± 1√

3
a, and since x is a length, we

should get x = 1√
3
a. Similarly, we obtain y = 1√

3
b and z = 1√

3
c.

6. Use Lagrange multipliers to find the closest points to the origin on the hyperbola xy = 1.

Solution: We want to minimize f(x, y) = x2 + y2 subject to g(x, y) = 1, where
g(x, y) = xy. Setting ∇f = λ∇y, we obtain 2x = λy and 2y = λx. If λ = 0, then
x = y = 0, but (0, 0) is not a point on the hyperbola, so we can ignore this case. So
λ 6= 0, and we can write y = 2x/λ. Plugging this into xy = 1, we get 2x2/λ = 1,
or λ = 2x2. Taking this equation and plugging it into 2y = λx, we see 2y = 2x3, or
y = x3. Then 1 = xy = x4, so x = ±1. For x = 1 we solve xy = 1 to get y = 1;
likewise, for x = −1 we get y = −1. It is geometrically obvious that these correspond
to minima, so the closest points to the origin on xy = 1 are (1, 1) and (1,−1).

2 Lagrange multipliers with two constraints

1. Maximize and minimize 3x− y − 3z subject to x+ y − z = 1 and x2 + 2z2 = 1.
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Solution: Let f = 3x− y − 3z, g = x+ y − z, h = x2 + 2z2. Then ∇f = (3,−1,−3),
∇g = (1, 1,−1), and ∇h = (2x, 0, 4z). Our Lagrange multiplier equation ∇f = λ∇g +
µ∇h splits into

3 = λ+ 2µx, −1 = λ+ 0, −3 = −λ+ 4µz.

Hence λ = −1, and we can plug this in to the other equations to see µ = 2/x = −1/z,
so x = −2z. Plugging this into x2 + 2z2 = 1 gives 6z2 = 1 so z = ±1/

√
6, x = ∓2/

√
6

(so x has the opposite sign of z). Plugging this into x + y − z = 1 shows y = 1 + 3z
and so (x, y, z) is either

(−2/
√

6, 1 + 3/
√

6, 1/
√

6)

or
(2/
√

6, 1− 3/
√

6,−1/
√

6).

Computing 3x − y − 3z for each shows that the former gives a minimum (−1 − 2
√

6)
and the latter gives a minimum (1 + 2

√
6).

2. Maximize and minimize z subject to x2 + y2 = z2 and x+ y + z = 24.

Solution: This has no maximum or minimum. How do we see this? We show that
when z is large (how large exactly we’re about to see) then the system

x2 + y2 = z2

x+ y + z = 24

has a solution (x, y). To check this we solve for y in the second equation and plug back
into the first, obtaining

x2 + (24− x− z)2 = z2

which simplifies to
x2 + (z − 24)x+ (288− 24z) = 0

This is a quadratic equation and we know that they have solutions when the discrimi-
nant1 is greater or equal to zero. Here the discriminant is

(z − 24)2 + 4(288− 24z) = z2 + 48z − 576

This describes a parabola that’s ”open from above” so when z is very large or very
negative the discriminant will be positive, meaning that there are x, y such that (x, y, z)
satisfies our constraints. So f(x, y, z) can be arbitrarily large and arbitrarily small given
our constraints.

1 The discriminant of a quadratic equation ax2 + bx + c is b2 − 4ac. That’s the expression inside the
square root in the quadratic formula.

3 Challenge

1. Using the method of Lagrange multipliers, prove the following inequality: if x1, . . . , xn are
positive real numbers, then
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n

1/x1 + . . .+ 1/xn
≤ n
√
x1 . . . xn

with equality if and only if x1 = x2 = . . . = xn. The lefthand side is called the harmonic
mean of the numbers x1, . . . , xn and the righthand side is called their geometric mean.

Solution:
We maximize the function f(x1, . . . , xn) = n

1/x1+...+1/xn
≤ n
√
x1 . . . xn subject to the

constraint that g(x1, . . . , xn) := x1 . . . xn = C for a constant C.
Note that maximizing f is equivalent to minimizing the function F (x1, . . . , xn) = 1

x1
+

. . .+ 1
xn
. This function must obtain a minimum on the hypersurface x1 . . . xn = C > 0

because this quantity tends to infinity as min(x1, . . . , xn) → 0, so the minimum must
occur at a point found by Lagrange multipliers (since the gradient of the constraint
function is nonzero on its level set.)
For each k, we have

−1

x2k
= λx1 . . . x̂k . . . xn.

Where the hat over xk indicates that it is omitted from the product. Rearranging,

−1 = λx1 . . . x
2
k . . . xn = Cλxk.

Now, λ must be nonzero for this to hold, in which case we find that x1 = . . . = xn
(= n
√
C), which we may check gives equality for the claimed inequality. By the previous

reasoning, this must correspond to a minimum for F , or a maximum for f , so at any
other point, the LHS is strictly smaller than the RHS.

2. As in problem 1.4., find the dimensions of the box enclosing the largest volume if the box has
no top. Hint: try making a substitution before using Lagrange multipliers.

Solution: We want to maximize f(x, y, z) = xyz subject to the constraint xy+ 2yz+
2xz = 24. We make the substitution u = xy, v = yz, w = xz so that we are maximizing
uvw (which is (xyz)2) subject to the constraint u+ 2v + 2w = 24.
Now the Lagrange multiplier equations are vw = λ and uw = 2λ and uv = 2λ. The
last two equations give v = w. The first two equations give u = 2v. In terms of x, y, z,
this means yz = xz, so y = x, and similarly x = 2z. So the sides are in ratio 2 : 2 : 1.
Together with the original constraint xy + 2yz + 2xz = 24, we get x = y = 2

√
2 and

z =
√

2

3. If x1, . . . , xn are real numbers, prove that(
n∑

i=1

xi

)2

≤ n

(
n∑

i=1

x2i

)
.
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Solution: Let r =
√∑

i x
2
i . Define functions f(y1, . . . , yn) =

∑
i yi and

g(y1, . . . , yn) =
∑n

i=1 y
2
i . To show our desired inequality, it suffices to show that the

maximum value of f on the sphere g(y1, . . . , yn) = r is at most
√
nr (because then

f(x1, . . . , xn) ≤
√
nr, so f(x1, . . . , xn)2 ≤ nr, which is exactly the inequality we are

trying to show). So we optimize f subject to the constraint g = r.
To do this, we use Lagrange multipliers, and so we set∇f(y1, . . . , yn) = λ∇g(y1, . . . , yn)
for some scalar λ. Computing our gradients and plugging them in, we get 1 = 2λyi for
each i. Thus we must have yi = 1/(2λ) for all i (since λ = 0 would lead to the equation
1 = 0, which can’t hold). Plugging these into the equation g(y1, . . . , yn) = r, we obtain

r =
n∑

i=1

1

4λ2
=

n

4λ2
,

so λ = ±1
2

√
n/r. It follows that yi = ±

√
r/n for all i, so

∑
i

yi = n · ±
√
r

n
= ±
√
nr.

The (global) maximum is clearly obtained when the sign here is +, so we see that the
maximum value of f on the sphere g = r is

√
nr, as needed.

4 True/False

Supply convincing reasoning for your answer.

(a) T F Any continuous function on the domain {(x, y) ∈ R2 : x2 + y2 < 1} will attain a maximum.

Solution: False: f(x, y) = x is a counterexample.

(b) T F If xyex = λy and xyex = λx, then we can conclude that x = y.

Solution: False: It is true that λx = λy, but the case λ = 0 poses a problem. For
example, if x = 0, y = 1, λ = 0, then both equations are satisfied.

(c) T F If f(x, y) is differentiable and attains a maximum at (a, b) in the region
{(x, y) ∈ R2 : |x|+ |y| ≤ 1}, then fx(a, b) = fy(a, b) = 0.

Solution: False: This is true if (a, b) is in the interior of the region, but not necessarily
if |a|+ |b| = 1.

(d) T F It is possible that a function f(x, y) can have no extrema along a level curve g(x, y) = 0.

Solution: True: for example f(x, y) = x and g(x, y) = y = 0.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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