# Discussion 10 Worksheet Answers <br> Global maxima and minima 

Date: 9/24/2021<br>MATH 53 Multivariable Calculus

## 1 Finding Extrema

Find the global maxima and minima of the following functions on their indicated domains.

1. The function $f(x, y)=x^{2}-y$ on the domain $D=[0,2] \times[0,2]$.

Solution: On the domain, $x^{2}$ is maximized at $x=2$ and $y$ is minimized at $y=0$, so $f$ is maximized at the point $(2,0)$ (with value 4 ) and similarly $f$ is minimized at $(0,2)$, with value -2 .
2. The function $f(x, y)=x-y$ on the domain $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.

Solution: The gradient vector $\langle 1,-1\rangle$ is never zero, so all extrema lie on the boundary. We parameterize the boundary $x=\cos (t), y=\sin (t)$, so that $f(\cos (t), \sin (t))=\cos (t)-$ $\sin (t)$. The derivative of this function is $-\sin (t)-\cos (t)$, which vanishes at $t=3 \pi / 4$ and $t=7 \pi / 4$. These correspond to minima and maxima, respectively.
3. The function $f(x, y)=x^{2}-x y+y^{2}-3 y$ on the region bounded by the $x$ and $y$ axes and the line $x+y=4$.
Solution: The gradient vector is $\langle 2 x-y,-x+2 y+1$, which vanishes only at the point $(1,2)$, which is in the interior of the domain. We see $f(1,2)=-3$. As this is the only critical point on all of $\mathbb{R}^{2}$ and it is a minimum (for example by the second derivative test), it is a global minimum. We examine the three boundary lines to look for possible maxima:
On the $x$-axis with $0 \leq x \leq 4$, we have $f(x, 0)=x^{2}$, which is maximized at $f(4,0)=16$. On the $y$-axis, with $0 \leq y \leq 4$, we have $f(0, y)=y^{2}-3 y$, which is maximized at $f(0,4)=4$.
Finally, on the line $x=4-y$ with $0 \leq y \leq 4$, we have $f(4-y, y)=3 y^{2}-15 y+16$, which is maximized at $f(4,0)=16$.
So, altogether, there is a minimum at $f(1,2)=-3$ and a maximum at $f(4,0)=16$.

### 1.1 Past midterm problems

1. Find the following. If an expression is undefined, say so.

- $d y / d x$, where $x=2 \sin t, y=3 \cos t$. Express your answer as a function of $t$.
- The area of the region between the curve whose expression in polar coordinates is $r=e^{\theta}$ $(0 \leq \theta \leq \pi / 2)$, the line $\theta=0$, and the line $\theta=\pi / 2$.
- $\lim _{(x, y) \rightarrow(0,0)} x / y$.
- The equation of the plane tangent to the surface $z=(x+y)^{1 / 2}$ at the point where $x=2, y=7$.
- 

$$
\frac{\partial^{2}}{\partial x \partial y}(f(x) g(y))
$$

where $f$ and $g$ are differentiable functions. (Express your answer in terms of $f$ and $g$ and their derivatives.)
-

$$
\int_{0}^{1} \vec{\jmath} \times\left(t^{2} \vec{\imath}+e^{-t^{2}} \vec{\jmath}+(\tan t) \vec{k}\right) d t
$$

where $\vec{\imath}, \vec{\jmath}$, and $\vec{k}$ are the standard basis vectors in $\mathbb{R}^{3}$.
2. - Use the cross product to find numbers $p, q, r$, and $s$ such that the plane $p x+q y+r z+s=0$ goes through the points $(1,0,0),(0,2,0)$, and $(0,0,3)$.

- Now find a DIFFERENT set of numbers $p^{\prime}, q^{\prime}, r^{\prime}$, and $s^{\prime}$ such that the plane $p^{\prime} x+q^{\prime} y+$ $r^{\prime} z+s^{\prime}=0$ still goes through these three points.

3. Consider the curve described in polar coordinates by $r=2+\cos 2 \theta$.

- Explain, without doing any computation, why the area enclosed by the curve must be less than $9 \pi$.
- Compute the area enclosed by the curve.
- Sketch the curve.


## Solution: 1.

- We have $d x / d t=2 \cos t$ and $d y / d t=-3 \sin t$, so

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=-\frac{3}{2} \tan t
$$

- This is just

$$
\frac{1}{2} \int_{0}^{\pi / 2} e^{2 \theta} d \theta=\frac{1}{4}\left(e^{\pi}-1\right)
$$

- The limit does not exist (taking the limit along the $x$-axis gives 0 ; taking the limit along the line $x=y$ gives 1 ).
- We have $\partial z / \partial x=\partial z / \partial y=\frac{1}{2}(x+y)^{-1 / 2}$. At $(2,7)$ these derivatives are both $1 / 6$, and $z=3$, so the tangent plane equation is

$$
z-3=\frac{1}{6}(x-2)+\frac{1}{6}(x-7)
$$

- Taking the derivative with respect to $x$ and holding $y$ constant gives $f^{\prime}(x) g(y)$. Then taking the derivative with respect to $y$ and holding $x$ constant gives $f^{\prime}(x) g^{\prime}(y)$.
- The integrand simplifies to $-t^{2} \vec{k}+(\tan t) \vec{\imath}$. Doing Calc 1 integration then gives the result as $-\frac{1}{3} \vec{k}-\log (\cos 1) \vec{\imath}$.

2. 

- The vectors $(-1,2,0)$ and $(-1,0,3)$ both point parallel to the plane (why?). So the cross product of the first with the second, $(6,3,2)$ gives a vector pointing normal to the plane. This means that the equation of the plane is $6 x+3 y+2 z+s=0$ for some $s$. Plugging in the point $(1,0,0)$ shows that $s=-6$, so the plane is given by $6 x+3 y+2 z-6=0$.
- The easy way is just to multiply everything by some nonzero scalar. Choose this scalar to be 2 (it doesn't really matter) and we get $12 x+6 y+4 z-12=0$.

3. 

- We have $|2+\cos 2 \theta| \leq 3$ for any $\theta$, so the curve is contained in the circle of radius 3 centered at the origin. This containing circle has area $9 \pi$, so the curve must have smaller area (since it's not equal to the whole circle).
- We use the formula $A=\frac{1}{2} \int_{0}^{2 \pi}(2+\cos 2 \theta)^{2} d \theta=9 \pi / 2$.
- This is something you can check for yourself using Desmos - though please try plotting it by hand first!

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

