committee: Vera Serganova (Chair), Song Sun (Advisor), Richard Bamler, Alexander Givental (academic senate representative)

Riemannian Geomery

- VS: What topic do you want to start with?
- me: Riemannian Geometry
- **RB**: What is the definition of the cut locus? (*This was not on my syllabus*)
- **me:** You mean the cut locus of a point $p \in M$?
- **RB:** Yes
- **me:** So if you have a geodesic $\gamma(t) = \exp_p(tv)$ from *p* then it's minimizing for small *t* but at some point t_* it stops being and that point is the cut locus. (You do this for all *v*).
- **RB**: What are some reasons why the geodesic would stop being minimizing?
- me: So two possibilities are that
 - (1) $\gamma(t_*)$ is a conjugate point.
 - (2) there is another minimizing geodesic from p to $\gamma(t_*)$.
- **RB:** Prove that these are the only reasons.
- **me:** So I think we need *M* to be complete for that.
- **me:** So let's assume that t_* is the time where γ intersects the cut locus and $t_0 > t_*$ is the first time where (1) or (2) happens. Now assume (2) happens at t_0 . By definition of the cut locus we know that there's a curve to $\gamma(\frac{t_0+t_*}{2})$ shorter that γ so the other geodesic to $\gamma(t_0)$ is not minimizing. (*The logic of what I said isn't really correct but no one called me out.*)

Now let's assume (1) happens at t_0 ... So we know that exp is a diffeomorphism up to t_0 and hence also in a neighborhood of $\gamma|_{[0,t_0]}$. I proceeded to be very confused for maybe 20-30 minutes.

The problem was that contradiction is not the correct strategy here. In particular it doesn't make sense to think about "what happens at t_0 ". By definition for every point after t_* there will be a shorter geodesic connecting it to p, but the difficulty is in showing that there will be another geodesic to $\gamma(t_*)$ or a geodesic variation of γ that doesn't move at t_* up to first order.)

- **AG:** *at some point asks me what the definition of a conjugate point is.*
- **me:** It's a point $\gamma(t)$ so that there exists a nonzero Jacobi field along γ vanishing at 0 and *t*. *After some more confusion:*
- **AG:** You have a shorter geodesic from *p* to every $t > t_*$, not only to a single t_0 .
- **me:** So we can get a sequence γ_k of geodesics whose endpoints approach $\gamma(t_*)$. But I don't see why they would converge in any way
- **AG:** Are you sure?
- **me:** Oh, so their tangent vectors v_k at p are going to have an accumulation point v_{∞} . And $t \mapsto \exp_p(v_{\infty}t)$ is going to be a geodesic to $\gamma(t_*)$ of the same length as γ so we get (2).
- **RB:** But only if that geodesic is different from γ .
- **me:** Right, so that must be where (1) comes in. We need to somehow use these v_k to create a geodesic variation of γ . (*I got somewhat confused around here again because I was still thinking in terms of my first strategy*)

- **me:** If we can get a continuous family $v(s), s \to 0$ (instead of just v_k) then we can use the variation $f(s,t) = \exp_p(tv(s))$. The endpoint of this is going to move like $\partial_s f(0,t_*) = d_{t_*v(0)} \exp_p(t_*v'(0))$. So we just need v'(0) = 0... Maybe we can replace v(s) by $\tilde{v}(s) = v(s^2)$ to ensure this?
- **RB:** I think you're off the right track. Suppose that there is no conjugate point up to time t_* . Then what can you say about the exponential map?
- **me:** So we know that it's a diffeomorphism up to $\gamma(t_*)$. And so it's also a diffeomorphism onto a neighborhood of $\gamma([0, t_*])$. But then if we have those γ_k "converging" to γ for $k \gg 1$ they must be contained inside this neighborhood. But then γ_k and $\gamma|_{[0,t_k]}$ (for the appropriate t_k) will be different geodesics to the same point inside this neighborhood which contradicts the injectivity of exp. (*the cleaner way of stating this would have been to say that we conclude* $\gamma_k = \gamma_{[0,t_k]}$ *in the case where the geodesics "converge" to* γ .)
- **RB:** That sounds about right. Now consider \mathbb{CP}^2 with the Fubini-Study metric. What is the cut locus in this case?
- **me:** Ok let's see. So the Fubini-Study inner product $\langle u, v \rangle$ on \mathbb{CP}^2 by lifting u and v to S^5 , perpendicular to the S^1 fiber and then taking the inner product of those lifts in S^5 . My guess would be that the geodesics of \mathbb{CP}^2 are just the images of the geodesics in S^5 that are perpendicular to the fibers.
- **RB:** That is correct.
- **me:** So the cut locus of S^5 would be an equatorial S^4 . But then you probably need to quotient this by S^1 somehow... So the S^4 is $S^5 \cap \mathbf{0} \times \mathbb{R}^5$. But $\mathbf{0} \times \mathbb{R}^5$ is not S^1 invariant...
- **AG:** Maybe you can try a simpler problem first. For example \mathbb{CP}^1 .
- **me:** Right. So \mathbb{CP}^1 is diffeomorphic to S^2 and the Fubini-Study metric will just be the round metric on S^2 . So the cut locus of say the north pole is just the equator.
- **RB:** The equator?
- **me:** Yes. Oh wait no, the south pole. Or in terms of \mathbb{CP}^1 , the point at infinity. So then for \mathbb{CP}^2 is should be the \mathbb{CP}^1 at infinity. The preimage of that in S^5 is going to be $S^5 \cap \mathbf{0} \times \mathbb{C}^2$. There this explicit formula for the distance between two point in \mathbb{CP}^n . Maybe you could use that?
- **RB:** That would work but we don't need that. S^4 will be be the cut locus if you take all geodesics starting at [1:0:0] but you only need the ones that are perpendicular to the fiber.
- **me:** Oh right. I proceeded to sketch an (I think incorrect) argument that tried to show that the geodesics perpendicular to the fiber intersect S^4 in an integral submanifold of the foliation $\{v \in T_p S^5 \mid iv \in T_p S^5\}$. This would have to be the $S^5 \cap \mathbf{0} \times \mathbb{C}^2$.
- **RB:** What you're doing is too complicated. It's easy to see what the geodesics on S^5 perpendicular to the fibers look like.
- **me:** So they would be like $(\cos t, u \sin t)$ for some $u \in \mathbb{C}^2$. So therefore they reach the cut locus at $t = \pi/2$
- **RB:** Why?
- **me:** Because at $t = \pi/2$ the geodesic $(\cos t, -u \sin t)$ is at the antipodal point so in \mathbb{CP}^2 there's two minimizing geodesics to [0:u].
- **VS:** It's been an hour already so maybe we should move on to the next topic. *We decide to take a 3 minute break and that Lie Theory will be the next topic*

Lie Theory

- **VS:** Since we were talking about Riemannian geometry before: If you have a left-invariant metric on a Lie group then what can you say about its geometric properties?
- **me:** Uh I don't know?
- **VS:** Is it going to be complete.
- **me:** Yes. Because if you look at the identity then every geodesic will exist for some minimum time ε . So if γ is your geodesic then you know that at $\gamma(\varepsilon/2)$ the geodesic in direction $\gamma'(\varepsilon/2)$ will also exist for time ε (here you use that there is an isometry of *G* sending *e* to $\gamma(\varepsilon/2)$). So the geodesic γ at the identity exists for at least time $3\varepsilon/2$. And then you repeat this argument to get that the exponential map at the identity is defined on the whole tangent space.
- **VS:** asks a question about the exponential map for $G = SL_2\mathbb{R}$
- **me:** Do you mean the Riemannian or the Lie exponential map? They don't agree in general for a left-invariant metric.
- **RB:** Can you use Riemannian geometry to show that they don't agree for $SL_2\mathbb{R}$?
- **me:** *thinks for a bit.* Yes, because since $SL_2\mathbb{R}$ with a left-invariant metric is complete the Riemannian exponential map is surjective. But the Lie exponential map on $SL_2\mathbb{R}$ is not surjective.
- VS: Can you explain why it is not surjective?
- **me:** (*I had prepped this question the day before*). Of course. The matrix $B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ is not the matrix exponential of an antisymmetric matrix. If we have $A \in \mathfrak{sl}_2\mathbb{R}$ and write its Jordan decomposition as A = D + N with D diagonalizable and N nilpotent then $\exp(A) = \exp(D) \exp(N)$. If this is supposed to be B then the eigenvalues of A need to be $\pm ik\pi$ for k odd. I particular they are distinct, so N = 0. But then $\exp(A)$ is diagonalizable which gives a contradiction.
- **VS:** Since you mentioned $\mathfrak{sl}_2\mathbb{R}$, what are all Lie groups that have this as its Lie algebra.
- **me:** $SL_2\mathbb{R}$ has fundamental group \mathbb{Z}
- VS: Why?
- **me:** Because by the polar decomposition it is diffeomorphic to $SO(2) \times \{$ symmetric positive definit matrices $\}$ and the second factor is diffeomorphic to \mathbb{R}^n .

So we have a universal cover $SL_2\mathbb{R}$ and then you can take its quotient by subgroups of \mathbb{Z} . And the smallest of those quotients will be $SL_2\mathbb{R}$ and the other ones... They might all be isomorphic to $SL_2\mathbb{R}$?

- **AG:** What is the center of $SL_2\mathbb{R}$?
- **me:** It's $\pm Id$. Right, there is also $PSL_2\mathbb{R}$. So then I guess that means that the fundamental group of $PSL_2\mathbb{R}$ is a product or semidirect product of $\mathbb{Z}/2$ and \mathbb{Z} ? (*At this point I got confused for a while again.*)
- AG: So if you have a discrete normal subgroup of a Lie groups then what can you say about it?
- me: It must be contained in the center. I gave the standard argument for why.
- **AG:** So you said that if a simply connected Lie group G_0 has the same Lie algebra as G then it must be a quotient of G.
- **me:** Yes because the map of Lie algebras $\mathfrak{g} \to \mathfrak{g}_0$ can be integrated to a map $\tilde{G} \to G_0$ from the universal cover of G and this map is an isomorphism. With some more help (What is the fundamental group of $S_1/(\mathbb{Z}/2)$) I realized that $\pi_1 PSL_2\mathbb{R} = \mathbb{Z}$.

So $Z(SL_2\mathbb{R}) = \mathbb{Z}$.

- **AG:** If you quotient $SL_2\mathbb{R}$ by a subgroup $k\mathbb{Z}$ of its center, what is the center of that quotient going to be?
- **me:** \mathbb{Z}/k . So all of the quotients are nonisomorphic Lie groups.
- **VS:** Let's maybe move on to some algebra. Can you tell us something about the Killing form and its properties?
- **me:** Defines the Killing form for an action $\mathfrak{g} \curvearrowright V$ and for the adjoint actions. Its symmetric and bilinear.
- **VS:** What else can you say about it?
- me: I don't know what you mean.
- **VS:** some kind of hint
- me: Oh it's ad-invariant, so B(ad(z)x, y) + B(x, ad(z)y) = 0.
- VS: There is a theorem about solvable Lie algebras that is important in the structure theory.
- me: Do you mean Engel's theorem?
- VS: Can you state it?
- me: I first gave a wrong statement that was a mix of Engel's and Lie's theorem. When point this out.
- VS: Can you give a correct statement of either Engel or Lie?
- **me:** If g is solvable and $g \curvearrowright V$ is a finite representation then g acts by upper triangular matrices in some basis. (*Lie's theorem*)
- **VS:** Does this work for any field?
- **me:** No. I think this only works over the complex numbers (or any algebraically closed field of characteristic zero).
- VS: So what can you say about the Killing form of a (complex) solvable Lie algebra?
- me: I must always be zero I think? I try to prove this but of course it doesn't work?
- **VS:** What is the definition of solvability?
- **me:** You have $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}], \mathfrak{g}'' = [\mathfrak{g}', \mathfrak{g}']$ etc. and \mathfrak{g} is solvable if this eventually becomes zero. Oh so actually what you can say is that $B([\mathfrak{g}, \mathfrak{g}], \mathfrak{g}) = 0$. Because $B([x, y], z) = \operatorname{tr}(\operatorname{ad}([x, y]) \operatorname{ad}(z)) = \operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(y) \operatorname{ad}(z) - \operatorname{ad}(y) \operatorname{ad}(x) \operatorname{ad}(z))$. *I try to commute the maps in the trace to make it vanish but it doesn't work* Ah you can use that $\operatorname{ad}([x, y])$ is strictly upper triangular by Lie's theorem and then so is $\operatorname{ad}([x, y]) \operatorname{ad}(z)$ hence its trace vanishes.
- VS: If you have a compact Lie group, what can you say about its Killing form?

me: $B_{g} < 0$.

- **VS:** Is it always definite?
- **me:** Right, $B_{\mathfrak{g}} \leq 0$.
- VS: Why?
- **me:** gives the standard argument with a G-invariant metric and using that ad(x) has imaginary eigenvalues
- **SS:** What about compact *complex* Lie groups?
- **me:** They are always abelian, because $Ad : G \to GL(\mathfrak{g})$ goes from something compact into something affine, hence its image is a point. So Ad is trivial and since it's the differential of the conjugation map we conclude that *G* is abelian.
- **RB:** Can you show that *G* compact if $B_{\mathfrak{g}} < 0$.

- **me:** Let's see. Assume *G* were noncompact. Then there should be a 1-parameter subgroup that is isomorphic to \mathbb{R} ... (*I think I had an argument for this but I don't remember it anymore.*) So we have $x \in \mathfrak{g}$ with $\exp(tx) \neq e$ for $t \neq 0$...
- **RB:** I was thinking of a Riemannian geometry proof of this but this is fine too.
- **me:** Oh that sounds like a good idea. So if we extend $-B_{\mathfrak{g}}$ left-invariantly it will be a bi-invariant metric on *G*. And for bi-invariant metrics we know that the Levi-Civita connection is $\nabla_X Y = \frac{1}{2}[X, Y]$ on left-invariant vector fields.

So the curvature will be - *I* spent some time deriving this - $R(X,Y)Z = \frac{1}{4}[[X,Y],Z]$. And then we have that

$$0 \ge B_{\mathfrak{g}}(x,y) = \operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(y)) = \operatorname{tr}(z \mapsto [x, [y, z]]) = \operatorname{tr}(x \mapsto -4R(Y, Z)X)$$

And the last thing is 4Ric or -4Ric, I'm not sure about the sign

- **RB:** I think it's +4Ric.
- **me:** OK so the we get that $\operatorname{Ric} \ge 0$, so $\operatorname{Ric} \ge \varepsilon$ for some $\varepsilon > 0$ at the identity and then this bound will also hold at every other point. And then by Bonnet-Myers we know that *G* must be compact because its diameter is finite.
- **VS:** Does anyone want to ask more questions? *No.* Ok then let's take a 3 minute break and continue with the next topic.

Complex geometry

- SS: So what is you favorite theorem in complex geometry, so far?
- me: I'd say the Hodge theorem.
- **SS:** What's the statement?
- **me:** $\mathcal{A}^k(X) = \operatorname{Im} \bar{\partial} \oplus \operatorname{Im} \bar{\partial}^* \oplus \mathcal{H}^{p,q}$ is an orthogonal direct sum.
- **SS:** What is *X* here?
- **me:** (X, h) is a hermitian manifold. Oh and it needs to be compact of course.
- **SS:** What are some consequences of the Hodge theorem?
- **me:** It implies that $H^{p,q}(X) \cong \mathcal{H}^{p,q}(X)$. So it gives you Serre duality, and finiteness of dolbeault cohomology groups because the kernel of $\Delta_{\bar{\partial}}$ needs to be finite. And if X is Kähler then we have $\Delta_{\bar{\partial}} = \frac{1}{2}\Delta = \Delta_{\partial}$ which gives you the Hodge decomposition $H^k(X) \cong \bigoplus_{p+q=k} H^{p,q}(X)$.
- **SS:** You mentioned Kähler manifolds. Does the Hodge theorem impose any cohomological restrictions on Kähler manifolds?
- **me:** Yes the odd Betti numbers need to be even because the Hodge diamond needs to be symmetric.o
- **SS:** What would be the Hodge diamond of \mathbb{CP}^2 for example.
- **me:** *I write it down.* You know it has to be this because the Betti numbers of \mathbb{CP}^2 are 1, 0, 1, 0, 1.
- **SS**: Can you give an example of a non-Kähler manifold?
- **me:** The Hopf surface would be one. It's defined as $M = \mathbb{C}^2/\mathbb{Z}$ where the \mathbb{Z} -action is generated by $x \mapsto 2x$. Then M is diffeomorphic to $S^1 \times S^3$ so its Betti numbers are 1, 1, 0, 1, 1 which means it can's be Kähler.

- **SS:** What does this \mathbb{Z} action to at (0, 0)?
- **me:** Oh right you need to remove the origin from \mathbb{C}^2 in the definition.
- **SS:** Now consider you have a compact complex surface *X* with a holomorphic submersion π to a compact curve *S*. If the fibers of π are biholomorphic to \mathbb{P}^1 can you show that *X* is projective?
- **me:** So you could show that there is a positive line bundle on *X*. Or you could use that *S* embeds into some \mathbb{P}^N . Then if you find a holomorphic map $f : X \to \mathbb{P}^M$ such that $f \times \pi : X \to \mathbb{P}^M$ is an embedding you would be done.
- **SS:** How do you know that *S* is projective?
- **me:** All curves are algebraic by the Kodaira embedding theorem? Do you want me to elaborate on this?
- SS: Yes.
- **me:** So we know that *S* is Kähler and $H^2(S; R) \cong \mathbb{R}$ generated by ω . So if we take any point $p \in S$ then $\int_S c_1(\mathcal{O}(p)) = \deg[p] = 1 > 0$ hence $\mathcal{O}(p)$ is positive.
- **SS:** Why does the integral being positive mean that the bundle admits a positive metric? Oh you said that $H^2 = \mathbb{R}$. OK, and how is the embedding map defined?
- me: Defines the Kodaira embedding map.
- **SS:** OK continue.
- **me:** So I think you need to find a relatively ample line bundle *L* on *X*/*S*. Then you can pull back a positive line bundle *T* from *S* and $L \otimes T$ will be ample.
- **SS:** Can you define relatively ample?
- **me:** It means that the restriction of *L* to every fiber is ample.
- **SS:** Why would that tensor product be ample?
- **me:** Because the curvature $F_{L\otimes\pi^*T} \cong F_L + \pi^*F_T$ will be positive in vertical directions because of the F_L and positive in horizontal directions because of the π^*F_T . At least if you replace T by a high enough power.
- **SS:** If you know that the restriction of *L* to every fiber has a positively curved metric how do you know that there is a single metric on *L* that has positiver vertical curvature?
- **me:** I had missed this gap and needed to ask for clarification until I realized what the question was. So you can take a positively curved metric on the fiber of a point p. Then for a small neighborhood U of p, $\pi^{-1}(U)$ is a product so we can take the product metric. These metrics can be glued together with a partition of Unity on S that you pull back to X. This does not change the horizontal curvature because $\pi^*\varphi$ is constant in vertical directions.
- **SS:** So how do you find a relatively ample line bundle?
- **me:** I guess you can try $\mathcal{O}([X_p])$ where $X_p = \pi^{-1}(p)$. I compute the restriction of this to X_p but it's the trivial bundle \mathcal{O} .
- **SS:** So what other way is there to get line bundles except for divisors?
- **me:** I don't know. I mean if *X* is supposed to be algebraic then every line bundle must come from a divisor...
- **SS:** Is there some kind of interesting line bundle that exists on every complex manifold?
- **me:** thinks for a minute. Oh, the canonical bundle! I used the adjunction formula to compute the restriction of K_X to a fiber and get that its $\mathcal{O}(-2)$. So then K_X^{\vee} is relatively ample.
- SS: OK.

Song then also asked me to show that the Hopf surface is a holomorphic fiber bundle over \mathbb{P}^1 whose fibers are elliptic curves. He also asked me to state the general Hirzebruch-Riemann-Roch formula and the special case for surfaces. I managed to do those things without big difficulties.