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committee: Vera Serganova (Chair), Song Sun (Advisor), Richard Bamler, AlexanderGivental
(academic senate representative)

Riemannian Geomery

VS: What topic do you want to start with?
me: Riemannian Geometry
RB: What is the definition of the cut locus? (This was not on my syllabus)
me: You mean the cut locus of a point p ∈ M?
RB: Yes
me: So if you have a geodesic γ(t) = expp(tv) from p then it’s minimizing for small t but at some

point t∗ it stops being and that point is the cut locus. (You do this for all v).
RB: What are some reasons why the geodesic would stop being minimizing?
me: So two possibilities are that

(1) γ(t∗) is a conjugate point.

(2) there is another minimizing geodesic from p to γ(t∗).

RB: Prove that these are the only reasons.
me: So I think we needM to be complete for that.
me: So let’s assume that t∗ is the time where γ intersects the cut locus and t0 > t∗ is the first

time where (1) or (2) happens. Now assume (2) happens at t0. By definition of the cut
locus we know that there’s a curve to γ

(
t0+t∗

2

)
shorter that γ so the other geodesic to γ(t0)

is not minimizing. (The logic of what I said isn’t really correct but no one called me out.)
Now let’s assume (1) happens at t0... So we know that exp is a diffeomorphism up to t0
and hence also in a neighborhood of γ|[0,t0]. I proceeded to be very confused for maybe 20-30
minutes.
The problem was that contradiction is not the correct strategy here. In particular it doesn’t make
sense to think about “what happens at t0”. By definition for every point after t∗ there will be a shorter
geodesic connecting it to p, but the difficulty is in showing that there will be another geodesic to γ(t∗)
or a geodesic variation of γ that doesn’t move at t∗ up to first order.)

AG: at some point asks me what the definition of a conjugate point is.
me: It’s a point γ(t) so that there exists a nonzero Jacobi field along γ vanishing at 0 and t.

After some more confusion:
AG: You have a shorter geodesic from p to every t > t∗, not only to a single t0.
me: So we can get a sequence γk of geodesics whose endpoints approach γ(t∗). But I don’t see

why they would converge in any way
AG: Are you sure?
me: Oh, so their tangent vectors vk at p are going to have an accumulation point v∞. And

t 7→ expp(v∞t) is going to be a geodesic to γ(t∗) of the same length as γ so we get (2).
RB: But only if that geodesic is different from γ.
me: Right, so that must be where (1) comes in. We need to somehow use these vk to create a

geodesic variation of γ. (I got somewhat confused around here again because I was still thinking
in terms of my first strategy)
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me: If we can get a continuous family v(s), s → 0 (instead of just vk) then we can use the
variation f(s, t) = expp(tv(s)). The endpoint of this is going to move like ∂sf(0, t∗) =
dt∗v(0) expp(t∗v

′(0)). So we just need v′(0) = 0... Maybe we can replace v(s) by ṽ(s) = v(s2)
to ensure this?

RB: I think you’re off the right track. Suppose that there is no conjugate point up to time t∗.
Then what can you say about the exponential map?

me: So we know that it’s a diffeomorphism up to γ(t∗). And so it’s also a diffeomorphism onto
a neighborhood of γ([0, t∗]). But then if we have those γk “converging” to γ for k ≫ 1 they
must be contained inside this neighborhood. But then γk and γ|[0,tk] (for the appropriate tk)
will be different geodesics to the same point inside this neighborhood which contradicts
the injectivity of exp. (the cleaner way of stating this would have been to say that we conclude
γk = γ[0,tk] in the case where the geodesics “converge” to γ.)

RB: That sounds about right. Now consider CP2 with the Fubini-Study metric. What is the cut
locus in this case?

me: Ok let’s see. So the Fubini-Study inner product ⟨u, v⟩ on CP2 by lifting u and v to S5,
perpendicular to the S1 fiber and then taking the inner product of those lifts in S5. My
guess would be that the geodesics ofCP2 are just the images of the geodesics in S5 that are
perpendicular to the fibers.

RB: That is correct.
me: So the cut locus of S5 would be an equatorial S4. But then you probably need to quotient

this by S1 somehow... So the S4 is S5 ∩ 0× R5. But 0× R5 is not S1 invariant...
AG: Maybe you can try a simpler problem first. For example CP1.
me: Right. So CP1 is diffeomorphic to S2 and the Fubini-Study metric will just be the round

metric on S2. So the cut locus of say the north pole is just the equator.
RB: The equator?
me: Yes. Oh wait no, the south pole. Or in terms of CP1, the point at infinity. So then for CP2

is should be the CP1 at infinity. The preimage of that in S5 is going to be S5 ∩ 0× C2.
There this explicit formula for the distance between two point in CPn. Maybe you could
use that?

RB: Thatwouldwork butwe don’t need that. S4 will be be the cut locus if you take all geodesics
starting at [1 : 0 : 0] but you only need the ones that are perpendicular to the fiber.

me: Oh right. I proceeded to sketch an (I think incorrect) argument that tried to show that the geodesics
perpendicular to the fiber intersect S4 in an integral submanifold of the foliation {v ∈ TpS

5 | iv ∈
TpS

5}. This would have to be the S5 ∩ 0× C2.
RB: What you’re doing is too complicated. It’s easy to see what the geodesics on S5 perpen-

dicular to the fibers look like.
me: So they would be like (cos t, u sin t) for some u ∈ C2. So therefore they reach the cut locus

at t = π/2

RB: Why?
me: Because at t = π/2 the geodesic (cos t,−u sin t) is at the antipodal point so in CP2 there’s

two minimizing geodesics to [0 : u].
VS: It’s been an hour already so maybe we should move on to the next topic.

We decide to take a 3 minute break and that Lie Theory will be the next topic
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Lie Theory

VS: Since we were talking about Riemannian geometry before: If you have a left-invariant
metric on a Lie group then what can you say about its geometric properties?

me: Uh I don’t know?
VS: Is it going to be complete.
me: Yes. Because if you look at the identity then every geodesic will exist for some minimum

time ε. So if γ is your geodesic then you know that at γ(ε/2) the geodesic in direction γ′(ε/2)
will also exist for time ε (here you use that there is an isometry of G sending e to γ(ε/2)).
So the geodesic γ at the identity exists for at least time 3ε/2. And then you repeat this
argument to get that the exponential map at the identity is defined on the whole tangent
space.

VS: asks a question about the exponential map for G = SL2R
me: Do you mean the Riemannian or the Lie exponential map? They don’t agree in general for

a left-invariant metric.
RB: Can you use Riemannian geometry to show that they don’t agree for SL2R?
me: thinks for a bit. Yes, because since SL2Rwith a left-invariant metric is complete the Rieman-

nian exponential map is surjective. But the Lie exponential map on SL2R is not surjective.
VS: Can you explain why it is not surjective?
me: (I had prepped this question the day before). Of course. The matrix B =

( −1 1
0 −1

)
is not the

matrix exponential of an antisymmetric matrix. If we have A ∈ sl2R and write its Jor-
dan decomposition as A = D + N with D diagonalizable and N nilpotent then exp(A) =
exp(D) exp(N). If this is supposed to be B then the eigenvalues of A need to be ±ikπ for
k odd. I particular they are distinct, so N = 0. But then exp(A) is diagonalizable which
gives a contradiction.

VS: Since you mentioned sl2R, what are all Lie groups that have this as its Lie algebra.
me: SL2R has fundamental group Z
VS: Why?
me: Because by the polar decomposition it is diffeomorphic toSO(2)×{symmetricpositivedefinitmatrices}

and the second factor is diffemorphic to Rn.
So we have a universal cover S̃L2R and then you can take its quotient by subgroups of Z.
And the smallest of those quotients will be SL2R and the other ones... They might all be
isomorphic to SL2R ?

AG: What is the center of SL2R?
me: It’s±Id. Right, there is alsoPSL2R. So then I guess thatmeans that the fundamental group

of PSL2R is a product or semidirect product of Z/2 and Z? (At this point I got confused for
a while again.)

AG: So if you have a discrete normal subgroup of a Lie groups then what can you say about it?
me: It must be contained in the center. I gave the standard argument for why.
AG: So you said that if a simply connected Lie group G0 has the same Lie algebra as G then it

must be a quotient of G.
me: Yes because the map of Lie algebras g → g0 can be integrated to a map G̃ → G0 from the

universal cover of G and this map is an isomorphism.
With some more help (What is the fundamental group of S1/(Z/2)) I realized that π1PSL2R = Z.
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So Z( ˜SL2R) = Z.
AG: If you quotient ˜SL2R by a subgroup kZ of its center, what is the center of that quotient

going to be?
me: Z/k. So all of the quotients are nonisomorphic Lie groups.
VS: Let’s maybe move on to some algebra. Can you tell us something about the Killing form

and its properties?
me: Defines the Killing form for an action g ↷ V and for the adjoint actions. Its symmetric and

bilinear.
VS: What else can you say about it?
me: I don’t know what you mean.
VS: some kind of hint
me: Oh it’s ad-invariant, so B(ad(z)x, y) +B(x, ad(z)y) = 0.
VS: There is a theorem about solvable Lie algebras that is important in the structure theory.
me: Do you mean Engel’s theorem?
VS: Can you state it?
me: I first gave a wrong statement that was a mix of Engel’s and Lie’s theorem. When point this out.
VS: Can you give a correct statement of either Engel or Lie?
me: If g is solvable and g ↷ V is a finite representation then g acts by upper triangular matrices

in some basis. (Lie’s theorem)
VS: Does this work for any field?
me: No. I think this only works over the complex numbers (or any algebraically closed field of

characteristic zero).
VS: So what can you say about the Killing form of a (complex) solvable Lie algebra?
me: I must always be zero I think? I try to prove this but of course it doesn’t work?
VS: What is the definition of solvability?
me: You have g′ = [g, g], g′′ = [g′, g′] etc. and g is solvable if this eventually becomes zero.

Oh so actually what you can say is that B([g, g], g) = 0.
BecauseB([x, y], z) = tr(ad([x, y]) ad(z)) = tr(ad(x) ad(y) ad(z)−ad(y) ad(x) ad(z)). I try to
commute the maps in the trace to make it vanish but it doesn’t work
Ah you can use that ad([x, y]) is strictly upper triangular by Lie’s theorem and then so is
ad([x, y]) ad(z) hence its trace vanishes.

VS: If you have a compact Lie group, what can you say about its Killing form?
me: Bg < 0.
VS: Is it always definite?
me: Right, Bg ≤ 0.
VS: Why?
me: gives the standard argument with a G-invariant metric and using that ad(x) has imaginary eigen-

values
SS: What about compact complex Lie groups?
me: They are always abelian, because Ad : G → GL(g) goes from something compact into

something affine, hence its image is a point. So Ad is trivial and since it’s the differential
of the conjugation map we conclude that G is abelian.

RB: Can you show that G compact if Bg < 0.
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me: Let’s see. AssumeGwere noncompact. Then there should be a 1-parameter subgroup that
is isomorphic to R ... (I think I had an argument for this but I don’t remember it anymore.)
So we have x ∈ g with exp(tx) ̸= e for t ̸= 0...

RB: I was thinking of a Riemannian geometry proof of this but this is fine too.
me: Oh that sounds like a good idea. So ifwe extend−Bg left-invariantly itwill be a bi-invariant

metric on G. And for bi-invariant metrics we know that the Levi-Civita connection is
∇XY = 1

2
[X, Y ] on left-invariant vector fields.

So the curvature will be - I spent some time deriving this - R(X, Y )Z = 1
4
[[X, Y ], Z]. And

then we have that

0 ≥ Bg(x, y) = tr(ad(x) ad(y)) = tr(z 7→ [x, [y, z]]) = tr(x 7→ −4R(Y, Z)X)

And the last thing is 4Ric or −4Ric, I’m not sure about the sign
RB: I think it’s +4Ric.
me: OK so thewe get thatRic ≥ 0, soRic ≥ ε for some ε > 0 at the identity and then this bound

will also hold at every other point. And then by Bonnet-Myers we know that G must be
compact because its diameter is finite.

VS: Does anyone want to ask more questions? No. Ok then let’s take a 3 minute break and
continue with the next topic.

Complex geometry
SS: So what is you favorite theorem in complex geometry, so far?
me: I’d say the Hodge theorem.
SS: What’s the statement?
me: Ak(X) = Im ∂̄ ⊕ Im ∂̄∗ ⊕Hp,q is an orthogonal direct sum.
SS: What is X here?
me: (X, h) is a hermitian manifold.

Oh and it needs to be compact of course.
SS: What are some consequences of the Hodge theorem?
me: It implies thatHp,q(X) ∼= Hp,q(X). So it gives you Serre duality, and finiteness of dolbeault

cohomology groups because the kernel of ∆∂̄ needs to be finite.
And ifX is Kähler thenwe have∆∂̄ = 1

2
∆ = ∆∂ which gives you theHodge decomposition

Hk(X) ∼= ⊕p+q=kH
p,q(X).

SS: You mentioned Kähler manifolds. Does the Hodge theorem impose any cohomological
restrictions on Kähler manifolds?

me: Yes the odd Betti numbers need to be even because the Hodge diamond needs to be sym-
metric.o

SS: What would be the Hodge diamond of CP2 for example.
me: I write it down. You know it has to be this because the Betti numbers of CP2 are 1, 0, 1, 0, 1.
SS: Can you give an example of a non-Kähler manifold?
me: The Hopf surface would be one. It’s defined asM = C2/Zwhere the Z-action is generated

by x 7→ 2x. Then M is diffeomorphic to S1 × S3 so its Betti numbers are 1, 1, 0, 1, 1 which
means it can’s be Kähler.
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SS: What does this Z action to at (0, 0)?
me: Oh right you need to remove the origin from C2 in the definition.
SS: Now consider you have a compact complex surface X with a holomorphic submersion π

to a compact curve S. If the fibers of π are biholomorphic to P1 can you show that X is
projective?

me: So you could show that there is a positive line bundle on X . Or you could use that S
embeds into some PN . Then if you find a holomorphic map f : X → PM such that f × π :
X → PM is an embedding you would be done.

SS: How do you know that S is projective?
me: All curves are algebraic by the Kodaira embedding theorem? Do youwant me to elaborate

on this?
SS: Yes.
me: So we know that S is Kähler and H2(S;R) ∼= R generated by ω. So if we take any point

p ∈ S then
∫
S
c1(O(p)) = deg[p] = 1 > 0 hence O(p) is positive.

SS: Why does the integral being positive mean that the bundle admits a positive metric? Oh
you said that H2 = R. OK, and how is the embedding map defined?

me: Defines the Kodaira embedding map.
SS: OK continue.
me: So I think you need to find a relatively ample line bundle L on X/S. Then you can pull

back a positive line bundle T from S and L⊗ T will be ample.
SS: Can you define relatively ample?
me: It means that the restriction of L to every fiber is ample.
SS: Why would that tensor product be ample?
me: Because the curvature FL⊗π∗T

∼= FL + π∗FT will be positive in vertical directions because
of the FL and positive in horizontal directions because of the π∗FT . At least if you replace
T by a high enough power.

SS: If you know that the restriction of L to every fiber has a positively curved metric how do
you know that there is a single metric on L that has positiver vertical curvature?

me: I had missed this gap and needed to ask for clarification until I realized what the question was.
So you can take a positively curved metric on the fiber of a point p. Then for a small
neighborhood U of p, π−1(U) is a product so we can take the product metric. These metrics
can be glued together with a partition of Unity on S that you pull back toX . This does not
change the horizontal curvature because π∗φ is constant in vertical directions.

SS: So how do you find a relatively ample line bundle?
me: I guess you can try O([Xp]) where Xp = π−1(p). I compute the restriction of this to Xp but it’s

the trivial bundle O.
SS: So what other way is there to get line bundles except for divisors?
me: I don’t know. I mean if X is supposed to be algebraic then every line bundle must come

from a divisor...
SS: Is there some kind of interesting line bundle that exists on every complex manifold?
me: thinks for a minute. Oh, the canonical bundle! I used the adjunction formula to compute the

restriction of KX to a fiber and get that its O(−2). So then K∨
X is relatively ample.

SS: OK.
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Song then also asked me to show that the Hopf surface is a holomorphic fiber bundle over P1 whose
fibers are elliptic curves. He also asked me to state the general Hirzebruch-Riemann-Roch formula
and the special case for surfaces. I managed to do those things without big difficulties.
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