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Which key parameters govern translation efficiency?

Figure: Ribosomes move along mRNA, translating it into a polypeptide

What determines translation efficiency?

I What is the local density of ribosomes?
I What controls the production rate of protein?
I How to optimize translation efficiency?
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Complexity of translation

Elongation rates are locally regulated by a variety of factors:
I tRNA availability
I decoding and dissociation rates
I mRNA secondary structure
I co-translational folding
I signal recognition particle (SRP) binding
I interactions between polypeptide and ribosome exit tunnel

I Do faster rates correspond to more efficient translation?
I What are the implications of codon usage bias?
I Does elongation or initiation limit production rates? What

about termination rates?
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Totally Asymmetric
Simple Exclusion
Process
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The model

pi-ℓ pi
α β

i N1

Figure: Totally Asymmetric Simple Exclusion Process (TASEP) with
inhomogeneous jump rates and particles of size ` = 3

Inhomogeneous `-TASEP

I continuous time Markov chain τ(·) ∈ {0, 1}N
I particles enter at rate α if first ` sites are empty
I particles move from site i to i + 1 at rate pi if site i + ` is

empty
I particles exit through site N at rate β
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The homogeneous 1-TASEP
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Modeling transport phenomena
I first introduced by MacDonald et al. (1968) to model

translation
I solved by Derrida, Evans, Hakim, Pasquier (1993)
I since then used to model traffic flow, molecular transport,

surface growth etc.

Hydrodynamics, KPZ and large deviations
I law of large numbers (Burger’s Equation)
I fluctuations (mostly on Z and under specific initial data)
I rare events
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Phase Diagram of the homogeneous 1-TASEP
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Figure: We expect equilibrium density profiles to depend critically on α
and β
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Phase Diagram of the homogeneous 1-TASEP
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Figure: Low initiation rates and large termination rates leave the lattice
sparsely populated
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Phase Diagram of the homogeneous 1-TASEP
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Figure: High initiation rate and low termination rates create traffic jams,
resulting in a densely populated lattice
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Phase Diagram of the homogeneous 1-TASEP
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Figure: If particles both arrive and leave quickly, the results is a
superposition of traffic jams and sparse regions
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Phase Diagram of the homogeneous 1-TASEP
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Figure: These three density profiles are representative of the low density,
high density and maximum current regimes
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Phase Diagram of the homogeneous 1-TASEP
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Figure: These three density profiles are representative of the low density,
high density and maximum current regimes
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Can we extend these results to the inhomogeneous `-TASEP?

Mean-field approaches
I ignore higher order correlations, e.g. approximate

∂t〈τi〉 = 〈τi−1 (1− τi)〉 − 〈τi (1− τi+1)〉
≈ 〈τi−1〉(1− 〈τi〉)− 〈τi〉(1− 〈τi+1〉)

I approximate bulk behavior by dynamics on a ring
I treat local defects as separating two decoupled copies of

the homogeneous TASEP

Exact results through coupling
I global effects of local defects
I random elongation rates
I hydrodynamic limits
I power series expansions in α
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Hydrodynamic Limit
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Hydrodynamic Limit

〈τi(T)〉 ~ ρ(i/N,T/N )
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N → ∞

pi ~ λ (x)
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Figure: Continuum limit under Euler scaling
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What dynamics does ρ follow?

1. Identify candidate PDE
through Zero Range Process
(ZRP):

1 2 3 4

p2 p6 p9 p13
(a)

1 2 3 4

p3 p11
p16

(b)

Figure: Mapping from
inhomogeneous `-TASEP to
ZRP

Result is a conservation law with
current J = λρG(ρ):

∂tρ = −∂x (λρG(ρ)) ,

where

G(ρ) = 1− `ρ
1− (`− 1) ρ.

2. Rigorous proof involves
I relative entropy techniques

(Rezakhanlou ’97)
I coupling with smoother

system (Bahadoran ’12)
I local stationarity
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Solving the PDE
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Boundary conditions & characteristic equations

α & β impose effective Dirich-
let Boundary Conditions which
propagate via characteristics

Hydrostatics are determined
by the characteristic curve that
saturates the lattice
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Figure: Characteristic curves for
different (α, β)
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Figure: Simulated and
theoretical static density profiles
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Phase diagram

β

α

0 1

0 1

0 1

β* = β*(λ1, λmin)

α
*
=

α
*
(λ
0,
λ
m
in
)

Figure: Phase diagram depends only on λ0, λ1, λmin and `. Phase
transitions are in ρ and J .
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Application to
Translation
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Caveat 1: Ribosome profiles are rarely smooth
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Figure: Typical elongation profile of a yeast gene
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Caveat 1: Ribosome profiles are rarely smooth
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Figure: Smoothing reveals clearer structure
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Caveat 1: Ribosome profiles are rarely smooth
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Figure: Simulation under noisy elongation yields noisy densities
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Caveat 1: Ribosome profiles are rarely smooth
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Figure: Smoothed predictions match smoothed densities
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Caveat 1: Ribosome profiles are rarely smooth
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Figure: Smoothed elongation rates predict translation dynamics
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Caveat 2: Misdetection of stacked ribosomes
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Figure: Complete identifiability in case of full detection
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Caveat 2: Misdetection of stacked ribosomes
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Figure: Mild misdetection affects HD, but preserves identifiability
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Caveat 2: Misdetection of stacked ribosomes
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Figure: Identifiability is lost under moderate to severe misdetection
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Caveat 2: Misdetection of stacked ribosomes
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Figure: Identifiability is lost under moderate to severe misdetection
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Caveat 3: Mixing time

I Analysis based on stationary distribution presupposes
negligible transient behaviour

I How long does it take for the chain to mix?

Reassurance

I In LD, approximately
ˆ 1

0

{
λ(x)H ′ ◦ H−1

−

( J
λ(x)

)}−1
dx

seconds
I In MC, roughly twice as long
I In yeast, the median mixing time is 68 seconds, compared

to a ∼ 30 minutes median half-life in a transcript
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Utility of hydrodynamic theory in understanding translation

Benefits of closed-form formulas

1. Obviate the need for costly simulation studies
2. Identification of key parameters governing translation,

namely α, λmin, λ0 and xmin = arg minx λ(x)

Design principles

1. Regulation: α should should act as main determinant of J
2. Production capacity: Jmax fixed by λmin

3. Sensitivity: rate of change of J in α is modulated by λ0

4. Ribosome cost: small xmin may save resources
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Regulation: Low Density (LD) vs. High Density (HD)
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Figure: Any given level of production can be instantiated through either
LD or HD. For the purposes of resource allocation, LD should be favored
over HD, rendering α the major determinant of J .
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How and how quickly can production rates adjust?
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Figure: J plateaus at Jmax = λmin/(1 +
√
`)2 with ∂αJ increasing in λ0

Hydrodynamics of the inhomogeneous `-TASEP



Model Continuum Limit Application

Optimizing ribosome cost at high production rates
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Translational efficiency
in yeast
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What regimes do yeast genes operate in?
(a) Phase diagram
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Figure: Analysis of 850 previously inferred elongation profiles: 841 genes
are located in LD, and 9 genes have pushed into MC, rendering α, λmin
and λ0 the main determinants of protein production.
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Genes exploit full dynamic range of currents
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I Most genes are initiation rate limited
I Elongation limited profiles exist at high translation rates
I Constitutively highly expressed transcripts operate close to

maximum capacity
I Genes with variable expression demands show large

variation in J
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λ0 facilitates realization and modulation of large currents
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I Elevated initial rates close to maximum capacity
I Sensitivity ratio λ0/λmin increased for variable expression

demands, and decreased for constitutive expression

Hydrodynamics of the inhomogeneous `-TASEP



Model Continuum Limit Application

Locations of minimum elongation rate are chosen judiciously
(b) concentration of xmin
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I Minimum elongation locations mirror 5′ translational
ramp, balancing trade-off between resource and sensitivity
considerations

I High sensitivity and proximity to MC lower xmin
significantly

I Genes with large xmin are furthest from MC
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Looking back and ahead

What happened?

1. Derived closed-form expressions for TASEP current and
densities by passing to hydrodynamic limit

2. Identified α, λ0, λmin and xmin as key parameters
3. Studied their consequences for codon usage bias
4. Developed four design principles governing translation
5. Provide evidence for implementation of principles in yeast

What might happen?
I Direct inference from ribosome profiling data

I incorporate stacked ribosomes
I Rate function regularity and smoothing
I Fluctuations, large deviations, mixing times, singular

configurations
I Apply machinery to transcription
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