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Population Genetics: Detecting Selective Pressure

Neutral Tree Tree with Selection
—
Y
> At each depth, leaf set > Leaf set sizes are highly
sizes are approximately unbalanced close to the
equidistributed root

» Given a tree, how can we tell whether it was generated

under selection or not?

» Data allows computation of sum of squares of leaf set sizes
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How to test the hypothesis whether { X} and {Y}} are identi-
cally distributed?
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Figure: Hypothesis testing based on ||S, «||3 is more sensitive to variance
changes than common other two-sample tests.
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Figure: Hypothesis testing based on ||S, |3 is more sensitive to
compound mean and variance changes than common other two-sample
tests, for randomly generated null and alternative of common support.
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— | Kolmogorov—Smirnov
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------ Mann—-Whitney

— Null
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Figure: Hypothesis testing based on ||S, |3 is more sensitive to
compound mean and variance changes than common other two-sample
tests, for randomly generated null and alternative of distinct support.
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New Perspectives on old Questions

What happened?

1. Discretized continuous Greenwood Statistic

2. Understood discretized problem through generating
functions of moments

3. CDF reconstruction from moments, CLT, transfer to
continuous problem

4. Application to two-sample testing

What happens now?

1. Apply hypothesis test to real data

2. Quantify more precisely the power against given classes of
alternatives
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