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1 Introduction

Conformal field theory (CFT) is a rich subject, and of central interest to string theory, since

tree-level string theories are CFTs, and more recently because the AdS/CFT correspondence

has shed deep insight into the relationship between gravity and quantum field theory. In

certain cases, CFTs come to us in spaces parametrized by moduli; in these cases, the space of

CFTs has the structure of a Riemannian manifold. This is particularly often the case when

the CFTs under consideration have some degree of supersymmetry. This analytic structure

on the space of CFTs often helps to relate correlation functions in one, well-understood
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CFT to those in other CFTs. Thus, new information about CFTs stands to be gained by

“zooming out” and considering the problem in a more general context.

In the present work, we review and refine the proofs and computations that have been

used to compute the metric of the conformal manifold in two-dimensional, N = (2, 2)

theories. In this case, the conformal manifold is Kähler, and a new technique called local-

ization, which can be used to compute the partition functions of supersymmetric gauged

linear sigma models (GLSMs), is used to provide the exact result for the Kähler potential

of the conformal manifold. Localization makes use of the fermionic symmetry of supersym-

metric GLSMs to construct a nilpotent, BRST-like operator Q. Sometimes, a large part of

the action turns out to be exact under Q, which allows for the exact computation of the

partition functions and certain correlators in these GLSMs. Indeed, localization shows that

the partition function is independent of the Yang-Mills coupling, which implies that the

partition function is an RG-invariant. But, in [1], Ed Witten showed that two-dimensional

N = (2, 2) GLSMs flow in the infrared to non-linear sigma models with Calabi-Yau target

spaces, and both flow to a CFT fixed point. Thus, localization allows us to compute the

partition functions of CFTs which arise as the low-energy limits of GLSMs. We will ar-

gue, along the lines of [2], that the partition function computes the Kähler potential of the

conformal manifold.

Consider a CFT p in d spatial dimensions. We can deform p by some operator O(x).

In CFTs with a Lagrangian description, this means adding a term λ
∫
ddxO(x) to the

action. More generally, in theories without a Lagrangian description, this means inserting

exp
(
λ
∫
ddxO(x)

)
into all correlation functions of the theory. O falls into one of three

categories, depending on its scaling dimension ∆. If ∆ > d, then the operator is said to be

irrelevant because the perturbed theory flows back to p in the infrared under renormalization

group (RG) flow. If ∆ < d, then the operator is said to be relevant, because the perturbed

theory flows away from p under RG flow. If ∆ = d, we call O marginal. If the perturbation

by a marginal operator takes us to another CFT p′, then O is said to be exactly marginal.

The dimensionless parameter λ can then be viewed as a coordinate on the 1-dimensional

space of all CFTs formed in this way. In general, there can be a set {Oµ}nµ=1 of exactly
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marginal operators, and the λµ can be viewed as coordinates on an n-dimensional manifold

of CFTs, and the {Oµ} as a basis for the tangent space of the conformal manifold at p.

Actually, this isn’t quite honest: if one tries to perturbatively compute the correlation

functions of the deformed theory, one will find divergences arising from the integration of

a correlator with a poorly-behaved short-distance divergence. Take, for example, the two

point function:

gµν := 〈Oµ(1)Oν(0)〉.

Conformal invariance guarantees that gij has all the properties of a Riemannian metric;

gµν is known as the Zamolodchikov metric. The first-order change of the Zamolodchikov

metric under a deformation exp
(
λµ
∫
ddxOµ(x)

)
should be

∫
ddxλρ〈Oµ(1)Oν(0)Oρ(x)〉. (1.1)

But by conformal invariance, the correlator 〈Oµ(1)Oν(0)Oρ(x)〉 behaves like 1
|x|d|x−1|d , so

the integral diverges logarithmically when x → 0 and x → 1. To make precise what we

mean by a deformation then, we need to define a renormalization scheme: an assignment of

physical meaning to the λµ. This ambiguity in the λµ is reminiscent of the arbitrary nature

of a choice of coordinates on a manifold. Indeed, different renormalization schemes turn

out to be related by changes of coordinates [3]. One can also–and this is the approach that

we will take here–let a renormalization scheme define a connection on the vector bundle of

operators over the conformal manifold [4, 5]. We will turn these heuristic arguments into

more precise statements when we specialize to d = 2 in section 2.

If one restricts attention further to superconformal field theories (SCFTs) and to de-

formations which also preserve supersymmetry, one often discovers an additional level of

structure on the conformal manifold. As mentioned above, in the d = 2, N = (2, 2)

case, the conformal manifold is Kähler [2]. This extra structure on the conformal manifold

imposes strong constraints on the correlation functions of operators in the class of CFTs

under consideration. The constraints appear in the form of differential equations that the

correlation functions must satisfy [4, 6] or in the possibility of computing exact results.
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Localization has made possible the computation of exact, non-perturbative results in su-

persymmetric theories [7–15]. This technique has important applications to computations

on the conformal manifold: in [2], it is shown that the exact partition functions computed

by localization in [11] can be used to compute the Kähler potential of the 4-dimensional

N = 2 superconformal manifold. This information, combined with the four-dimensional tt∗

equations discussed in [4], has been used to recursively and exactly compute all two- and

three-point functions of chiral primaries in four-dimensional N = 2 SCFTs [6]. The power

of the conformal manifold formalism is thus clear: it gives us an analytic structure on the

space of CFTs that allows us to compute quantities in “nearby” theories if we know them

in a reference theory. Especially coupled with techniques like localization, the conformal

manifold method provides wholesale insight into the structure of entire classes of CFTs.

We proceed in the following stages. In the next section, we provide an introduction to

the operator formalism of CFT and to the concepts of CFT deformations, which will make

relatively rigorous the concept of renormalization within the context of CFT. Moreover,

we will see how and when a manifold structure can arise on the space of CFTs. We then

proceed to a study of N = (2, 2)-supersymmetric gauge theories in flat two-dimensional

space and on S2. In these theories, we will see that the computation of certain quantities

(including the partition function) simplifies drastically to a one-loop calculation; moreover,

the partition function turns out to be RG-invariant. In section 4, we will provide a use for

the localization computation by showing that the partition function of superCFTs placed

on a two-sphere computes the Kähler potential of the conformal manifold.

2 CFTs, CFT deformations, and Connections

In this section, we briefly review the operator formalism of CFTs in two dimensions, define

what we mean by a CFT deformation, exhibit the manifold structure of the space of CFTs,

and analyze the relationship between CFT deformations and connections on the infinite-

dimensional vector bundle of operators over the conformal manifold.
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2.1 CFTs in the Operator Formalism

One usually thinks of conformal field theory as defined by a set of operators (forming a

representation of the Virasoro algebra) and their correlation functions [16]. Conformal

invariance imposes constraints on the correlation functions: the two-point function of pri-

mary operators, for example, is proportional to some power of the distance between those

operators. In two dimensions, conformal invariance dictates how correlators behave under

an arbitrary holomorphic reparametrization of the complex plane, so the information con-

tained in the correlators depends only on the complex structure of the plane with punctures

at the points of insertion of the operators in consideration. We’re therefore motivated, as

in [17, 18], to interpret a two-dimensional conformal field theory as a rule for assigning to

each Riemann surface with n punctures a set of correlators, one for each combination of n

operators. In other words, a CFT is a Hilbert space H, together with a map, for all g and

n, from P(g, n) (the space of Riemann surfaces of genus g with n punctures and a choice

of coordinates z1, · · · , zn vanishing at the punctures) to H⊗n, satisfying certain properties.

Note that, by the vertex-operator correspondence, an element of H⊗n can be seen as taking

as its input n operators and outputting the correlation function of those n operators. We

will discuss the additional conditions that a CFT needs to satisfy below. First, however,

we digress briefly to discuss an operation on elements of P :=
⊕

g,n P(g, n) called sewing.

Let P ∈ P(g1, n1) (with coordinates z1, · · · , zn1) and Q ∈ P(g2, n2) (with coordinates

w1, · · · , wn1) be two Riemann surfaces. Sewing P and Q at punctures i and j, respectively,

is denoted

P i∞j Q,

and is defined by identifying coordinate patches around the punctures in question via

ziwj = 1.

(If the unit disk isn’t included in the coordinate patches around zi and wj , then we can find

an isomorphic Riemann surface with punctures by rescaling zi and wj , as well as the other

puncture coordinates, appropriately.) The Riemann surface obtained in this way depends
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only on the isomorphism classes of P and Q, and P i∞j Q ∈ P(g1 + g2, n1 + n2 − 2).

We can similarly define P8ij by identifying punctures on the same Riemann surface, and

P8ij ∈ P(g1 + 1, n1 − 2). Now we’re in a position to give the definition of two-dimensional

conformal field theory (presented more fully in [17]) that we’ll use in our work. A CFT

is a Hilbert space H, furnishing a highest weight representation of the centrally-extended

Virasoro algebra, and, for every element P ∈ P(g, n) (for arbitrary g, n), a ray in the space

H⊗n, a representative of which we’ll write |P 〉. We will sometimes write Σ; z1 · · · , zn for

P , where Σ is the Riemann surface associated to P and the zi are the coordinates at the

punctures. We place the following constraints on the {|P 〉}. First, the CFT must associate

tensor products to disjoint unions of Riemann surfaces. Second, |P 〉 must behave under

the permutation of the punctures of P by a permutation of the factors in H⊗n. Next, let

Ln, L̄n be the generators of the Virasoro algebra. They satisfy:

[Ln, Lm] = Ln+m +
c

12
(n3 − n)δn,−m

[L̄n, L̄m] = L̄n+m +
c

12
(n3 − n)δn,−m (2.1)

[Ln, L̄m] = 0,

The stress-energy momentum tensors are given by:

T (z) =
∑

Lnz
n−2 T̄ (z̄) =

∑
L̄nz̄

n−2.

The tangent space to P(g, n) is spanned by n-tuples of meromorphic functions with

poles only at the origin. To each such n-tuple v, we can associate an operator on H⊗n

defined by:

T (v) =
1

2πi

∑
i

∮
T (zi)vi(zi),

where the zi are the coordinates vanishing at the punctures, the vi are the components of

v, and T (zi) is assumed only to act on the i-th factor in H⊗n. We can also, completely

analogously, define T̄ (v̄). The second requirement in our definition is that, if we deform
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P infinitesimally by v (recall that the tangent space of P(g, n) is spanned by the v), |P 〉

changes infinitesimally by:

δ |P 〉 =
(
T (v) + T̄ (v̄)

)
|P 〉 . (2.2)

This is a smoothness condition: it guarantees that the CFT reflects the smooth structure of

P(g, n). We also demand that δ |P 〉 = 0 when P is a sphere with three or fewer punctures.

This constrains the secondary-field OPEs to be determined entirely by the primary-field ones

[17]. Another condition, which isn’t strictly necessary, and that sometimes gets imposed is

that, if we consider the Riemann sphere S with punctures at the poles and the standard

coordinates z, z−1 there, then

|S; z, z−1〉 =
∑
n

|n〉 ⊗ |n〉 , (2.3)

where the |n〉 are an orthonormal basis for H. As mentioned above, this condition isn’t

strictly necessary. If |S; z, z−1〉 didn’t have this form, then conformal invariance would still

require that it be a symmetric bilinear form on H ⊗ H. We could therefore redefine the

inner product on H to be the one given by |S; z, z−1〉. This doesn’t change any of the

information in the CFT: we can compensate for this redefinition of the inner product by a

change in how we extract transition amplitudes from the CFT data. Moreover, note that

equation 2.3 identifies the two possible canonical ways that we have of turning a ket into a

bra. However, when dealing with families of CFTs, it is easier to let the sphere state vary

with the parameters of the theory space.

The final condition we place on CFTs is that they satisfy sewing relations. If P =

Σ; z1, · · · zn1 and Q = Σ′;w1, · · · , wn2 are two Riemann surfaces with punctures and coor-

dinate choices at the punctures, then the sewing relations are:

|P i∞j Q〉 = 〈S; zi, wj | (|P 〉 ⊗ |Q〉) (2.4)

|P8ij〉 = 〈S; zi, zj |P 〉 . (2.5)
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where it’s understood that 〈S; zi, wj | is contracting with the i-th tensor factor in |P 〉 and the

j-the tensor factor in |Q〉, and similarly for the second sewing relation. Moreover, 〈S; zi, wj |

is the bra⊗bra state such that 〈S; zi, wj |S;wj , zi〉 (contracting only on the inner factor) is

the identity operator. In other words, sewing puncture i to puncture j corresponds to

taking the trace (contracting) the i-th with the j-th tensor factors.

Equations 2.4 and 2.5 allow us to build up any |P 〉 from three-punctured spheres. This

is because the three-punctured sphere gives the OPE, and so the previous statement is

precisely that the OPE can be used to replace arbitrary products of operators with a sum

over lone operators. It’s easy to see how this definition of CFT makes contact with string

theory. We can think of the state |P 〉 as giving the genus g contribution to the amplitude for

scattering n strings: a puncture on a Riemann surface is conformally equivalent to a semi-

infinite cylinder, so each puncture can be understood as propagating a string state to or

from ±∞ in imaginary time. To be more precise, if we’re studying n-to-m string scattering,

each Riemann surface with n+m punctures represents a contribution to the amplitude from

a particular string interaction. If P is such a Riemann surface (hence, |P 〉 ∈ H⊗n+m), we

can use the inner product on H to create a state |P 〉in−out ∈ H⊗n⊗(H∗)⊗m. |P 〉in−out is the

operator that effects transitions from n-string states to m-string states through the string

scattering process represented by P . In the stringy interpretation, the sewing relations

represent locality: the amplitude for a composite process should be the product of the

amplitudes for the intermediate processes, with a sum over the possible intermediate out

states of the first process contracted with the intermediate in states of the second process.

As discussed above, correlators in CFT depend only on the conformal structure of the

complex plane with punctures at the operators whose correlator is being computed. The

above definition of CFT should therefore give us a way to extract correlators from the state

|P 〉. Indeed, the operator formalism allows us to readily formulate CFTs on higher-genus

surfaces. Given a Riemann surface Σ; z1, · · · , zn, we can compute the correlator of the fields

φ1, · · · , φn on Σ in the following way:

〈φ1(z1) · · ·φn(zn)〉Σ =

(
n⊗
i=1

〈S; zi, wi|φi(wi)〉

)
|Σ; z1, · · · , zn〉 , (2.6)
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where |φi(zi)〉 is the state corresponding to φi under the state-operator correspondence

inserted at zi and wi = 1/zi. When the sphere state is normalized as discussed above,

this simply means that correlators are gotten by taking the inner-product of the state

|Σ; z1, · · · , zn〉 with the corresponding operator states. Otherwise, we have to be careful to

use the sphere state, and not the inner product on H, to turn kets into bras.

We can, in particular, extract the OPE coefficients from this information. Geomet-

rically, this follows from the fact that if an operator φi enters the unit disk around the

insertion of another operator φj , we can replace the Riemann surface Σ with the sewing

product of a Riemann surface with one fewer puncture and a three-punctured sphere. The

states corresponding to φi and φj are inserted into two of the punctures of the sphere, and

the third puncture outputs the OPE expansion of the operators. More traditionally, we can

simply compute the OPE coefficients from the three-point functions as usual.

To conclude this section, we note that the above discussion can be rephrased in more

mathematical terms in the language of category theory [19] in a manner very similar to the

mathematical formulation of topological quantum field theory. Let C denote the category

whose objects are smooth, closed, oriented 1-manifolds (disjoint unions of oriented circles)

and whose morphisms are Riemann surfaces whose boundary can be identified with the

“in-” and “out-” 1-manifolds (with the orientation of the “out-” manifold reversed). Then it

can be seen from the above discussion that a conformal field theory is a monoidal functor

from C to some category of Hilbert spaces (whose exact properties we won’t discuss here)

satisfying certain smoothness properties and sewing relations. A monoidal functor in this

case takes disjoint unions of circles to tensor products of Hilbert spaces. We refer the reader

to [19] for further detail.

2.2 Infinitesimal CFT Deformations

Consider a CFT p with Hilbert space H. For each P ∈ P, we define an infinitesimal

deformation as an assignment δ |P 〉 to P . The deformed ket is seen as living in H. We take

the two-punctured sphere state in p to be normalized as in 2.3, but allow for the possibility

that it loses its normalization under the deformation. We note that choosing the deformed
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states to belong to H corresponds to making an arbitrary choice of identifying the Hilbert

space of the deformed theory with the Hilbert space of p. In order to be an infinitesimal

deformation, the transformation is required to satisfy

δ |P i∞j Q〉 = (δ 〈S; zi, wj |) (|P 〉 ⊗ |Q〉)

+ 〈S; zi, wj | (δ |P 〉 ⊗ |Q〉) + 〈S; zi, wj | (|P 〉 ⊗ δ |Q〉) . (2.7)

In other words, an infinitesimal CFT deformation preserves the sewing condition to first

order. The infinitesimally deformed theory has the same inner product as H. (As an aside,

we remark that, if we had demanded the two-punctured sphere state to be normalized as

in equation 2.3 above, the first term on the RHS of of equation 2.7 would be zero, but we’d

have to add another term to 2.7 compensating for the fact that the deformed theory has a

different inner product on its Hilbert space.)

An automorphism of H induces an automorphism on the H⊗n for all n. The infinites-

imal form of such an automorphism is an endomorphism of H extended to all H⊗n by

the Leibniz rule and constitutes an infinitesimal deformation. This deformation, of course,

doesn’t change the theory, but this fact will turn out to be important because the subtrac-

tion of counterterms in a renormalization scheme like minimal subtraction will correspond

to a change of basis in H. It will turn out that only certain choices of infinitesimal deforma-

tion will be capable of being integrated, even amongst infinitesimal deformations that define

isomorphic theories. It’s therefore crucial that we consider these “trivial” deformations.

If we wanted to compute higher-order contributions to a CFT deformation, we might

expect that these contributions have terms like δ2 |P 〉 , δ3 |P 〉, etc. in them. However, δ

is only defined on the surface states {|P 〉}P∈P , and δ |P 〉 might not be a surface state in

the CFT p so that δp might not be defined on all surface states. On the other hand, any

derivation ∆ on the tensor algebra of H and its dual will preserve the sewing relations to

all orders, since ∆ satisfies the Leibniz rule. ∆ also has the advantage of being defined on

all states in H and tensor powers of it and its dual, which a CFT deformation as defined

above doesn’t necessarily do. In many cases, the CFT axioms and the {δ |P 〉}P∈P will be
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enough to determine a derivation ∆ that is identically δ on the surface states. In [20],

the author explicitly verifies this for the case of a certain deformation on the space of

toroidal compactifications. Indeed, if we have a family of CFTs that we wish to think of

as a manifold, we can define a connection on that manifold and use that connection to

parallel transport surface states from other CFTs to p. The Hilbert spaces of the CFTs

form a bundle over the manifold, and the connection therefore defines a derivation on the

tensor algebra of this bundle. Thus, in the case of a conformal manifold, we expect that all

deformations arise as derivations. We will discuss this in more detail below.

We now consider a non-trivial CFT deformation. Let Σ; z1, · · · , zn be a Riemann surface

with punctures. Let O be a marginal operator, and Di be a disk of radius 1 centered on

the i-th puncture of Σ. We can define the following infinitesimal deformation of a CFT:

δ 〈Σ; z1, · · · , zn| = ε

∫
Σ−∪iDi

d2z 〈Σ; z1, · · · , zn, z | O(z)〉 , (2.8)

where ε is infinitesimal and 〈Σ; z1, · · · , zn| is the state that we contract with |φ1〉⊗· · ·⊗|φn〉

to extract the correlator 〈φ1(z1) · · ·φn(zn)〉Σ in equation 2.6. We present the deformation

as a deformation on 〈Σ| instead of |Σ〉 so that the deformations of the correlators are more

obvious, but since the sphere state provides a non-degenerate metric on H, it is possible to

go from one to the other and back without losing any information. Moreover, by the inner

product on the RHS of equation 2.8, we mean to add a puncture in Σ with local coordinate

z, then take the inner product of the state corresponding to O with the tensor factor

corresponding to z in 〈Σ; z1, · · · , zn, z|. Marginality of O guarantees that the above integral

is independent of the choice of coordinate z. It’s important that the Di are the unit disks

in order for the sewing relation to be preserved, since the sewing operation joins surfaces

along the unit disks around the punctures in question. However, it’s easy to see that if we

replace the unit disks by smaller disks, the difference between the two deformations is just

a basis change. If we let r < 1 and δr denote a deformation as in equation 2.8 except with
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the Di replaced by the disks Dr
i of radius r about the punctures, we find that:

δr 〈Σ; z1, · · · , zn| = −ε
∫

Σ−∪iDi
d2z 〈Σ; z1, · · · , zn, z | O(z)〉

+ ε

∫
∪i(Di−Dri )

d2z 〈Σ; z1, · · · , zn, z | O(z)〉 . (2.9)

But we can use the OPE (which is given to us by the thrice-punctured sphere state) to

replace the integral in the region near the i-th puncture in the following way: Σ with

an extra puncture at coordinate z is just the product of sewing together Σ and a thrice-

punctured sphere with punctures at 0,∞, and z, and coordinates such that the coordinate

at 0 is just 1/zi, the coordinate near ∞ is zi, and the coordinate near z is arbitrary. We

thus have:

〈Σ; z1, · · · , zn, z| = 〈Σ; z1, · · · , zn| ⊗ 〈S; 1/zi, zi, z| |S; zi, 1/zi〉 , (2.10)

(with |S; zi, 1/zi〉 inserted to contract the i-th tensor factor of 〈Σ; z1, · · · , zn| with the first

tensor factor of 〈S; 1/zi, zi, z|),so that

(δr − δ) 〈Σ| = ε 〈Σ; z1, · · · , zn|
∑
i

(∫
∪i(Di−Dri )

d2z |S; zi, 1/zi〉 〈S; zi, 1/zi, z | O(z)〉

)
.

(2.11)

In other words, the difference between integrating over the unit disk and over a smaller

disk is just induced by a linear transformation on H, so that using a smaller radius also

corresponds to an infinitesimal CFT deformation. Since a change in the region of integration

can be compensated by a linear transformation, and conversely since any deformation by a

linear transformation doesn’t change the theory either, the infinitesimal CFT deformations

that produce distinct CFTs are parametrized by the marginal operators O.

We will eventually restrict attention to deformations which preserve supersymmetry.

Everything we’ve done above carries over, except that we have to be careful that the defor-

mation doesn’t violate the symmetry. Supersymmetry can be thought of as a transformation

of H which preserves correlation functions, i.e. preserves the states {|P 〉}P∈P . Alterna-

tively, one can generalize the preceding discussion to super-Riemann surfaces [21], and then
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consider only deformations of the super-Riemann surfaces. This will manifestly preserve

supersymmetry.

2.3 Connections and Finite Deformations

We asserted that the space of CFTs often has a manifold structure on it. Let us see in

more detail how this might come about. We have seen above that the space of infinitesimal

deformations is parametrized by the marginal operators, so we have a vector space of

infinitesimal deformations. Let {Oµ} be a basis for this space. We can think of this

space as the tangent space to the conformal manifold (modulo several problems that we

will encounter later). We want to be able to form some sort of exponential map that can

take us from infinitesimal transformations to finite ones. To this end, suppose that we did

indeed have a manifold structure on the space of CFTs M; for each x ∈ M, there is a

corresponding Hilbert space Hx. {Hx}x∈M forms an infinite-dimensional vector bundle H

over M. We can therefore study connections on H (and the natural ones induced on its

dual and tensor powers): each such connection gives a derivation on the tensor algebra of

Hx for every x ∈ M. A connection therefore gives us a CFT deformation at each point

on the conformal manifold. On the other hand, infinitesimal CFT deformations do not

necessarily arise as connections on H. In [20], the author explicitly exhibits the canonical

deformations by marginal operators as the action of a connection in the case of CFTs arising

from toroidal compactification of string theories. As mentioned above, though, this is not

necessarily possible, so we will restrict attention only to deformations that do. This might

restrict the class of marginal operators which we can integrate to finite deformations.

If we write the connection as ∇µ = ∂µ + Γµ, requiring that a CFT deformation arise as

a connection amounts to solving for the coefficients of Γµ in some basis of Hx. We have the

infinite δµ |P 〉, one for each P ∈ P. Each such variation gives an equation linear in Γµ, so

the system is over-determined. This gives consistency conditions (see [5], Section 5 for the

beginnings of an investigation of this topic), among which is the requirement that the OPE

coefficients for the expansion of a marginal operator with any other operator Φ are zero for

other operators of the same dimension as Φ. In the case that Φ is marginal, this is the well-
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known consistency condition which guarantees that the marginals remain marginal after a

deformation. Indeed, these consistency conditions give restrictions on which marginals Oµ

can integrate to finite deformations; we shall call exactly marginal those marginal operators

that satisfy the consistency conditions arising from the solution of the equations for the Γµ,

in addition to one other requirement, discussed below.

Suppose that all x in some open subset of M have some symmetry group, by which

we mean linear transformations of Hx that leave the states {|P 〉}P∈P fixed. Then Γµ + sµ,

where sµ is a one-form of symmetry transformations, gives the same action on the states |P 〉

and therefore the same CFT deformation. This is, of course, no impediment to realizing an

infinitesimal CFT deformation as a connection. It simply means that we won’t be able to

determine the coefficients of Γµ uniquely between states that are connected by a symmetry

transformation. So, given a CFT deformation, there is some ambiguity concerning the

coefficients of the Γµ; however, this doesn’t affect the behavior of Γµ on the surface states.

We are interested in finite deformations, which preserve the sewing relations to all

orders. These can be concocted by integrating an infinitesimal CFT deformation. We will

first construct a finite CFT deformation given the assumption that the conformal manifold

structure exists, and use this reasoning to derive a formula for finite deformations that can

be given meaning independent of the existence of the conformal manifold. Let x ∈ M,

and let’s restrict attention to a coordinate neighborhood U of x for which H has a local

trivialization over U . This means that we can identify Hx for all x ∈ U . Suppose we have

chosen a connection ∇µ on H. Now, given a state |P 〉 ∈ H⊗nx , we can define a section t

of H⊗n which is |P 〉 on some neighborhood V ( U and goes to zero within U . It follows

that (∇µt)(x) = (Γµt)(x) = Γµ(x) |P 〉 for all x ∈ V . We can formally write the following

transformation on the states |P 〉:

|P 〉new =
∞∑
n=0

λµ1 · · ·λµn
n!

∇µ1 · · · ∇µnt(0). (2.12)

We claim that this is the finite form of the infinitesimal deformation given by ∇µ. To check
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that this preserves the sewing relation, note that the n-th order term in |P∞Q〉new is

λµ1 · · ·λµn
n!

∇µ1 · · · ∇µn (〈S| |P 〉 ⊗ |Q〉) .

The n-th order derivative acting on the state 〈S| |P 〉⊗|Q〉 is a sum of terms, each consisting

of m derivatives ∇µj1 · · · ∇µjm acting on 〈S|, p derivatives ∇µj′1 · · · ∇µj′p acting on |P 〉, and

n−(m+p) derivatives ∇µj′′1 · · · ∇µj′′n−m−p acting on |Q〉. The order of the derivatives is fixed

by the requirement that j1 < j2 < · · · < jm, and similarly for the j′s and the j′′s. Moreover,

any term with m derivatives on 〈S|, p derivatives on |P 〉, and n−m− p derivatives on |Q〉

is the same, since they just correspond to relabellings of the λµ. Thus, the coefficient of

the (m | p | n−m− p)-th order term is:

1

n!

(
n

m

)(
n−m
p

)
=

1

n!

n!

m! (n−m)!

(n−m)!

p! (n−m− p)!
=

1

m! p! (n−m− p)!
.

On the other hand, the (m | p | n−m−p)-th order term in new 〈S| |P 〉new⊗|Q〉new consists

of just the product of the m-th order term in new〈S| with the p-th order term in |P 〉new

and the n−m− p-th order term in |Q〉new. This evidently has the same coefficient as the

corresponding term in |P∞Q〉new. Thus, at least formally, the finite deformation defined

above preserves the sewing relation. We can therefore define a bona fide new CFT for each

value of the λµ.

Now, we’re being a bit fast with equation 2.12. There are a number of subtleties that

need to be addressed. If the Hilbert spaces of CFTs were finite-dimensional, equation 2.12

would converge, at least in some neighborhood of λµ = 0. However, finite-dimensionality

is not the case in the theories of interest to us, so it might not be possible to integrate the

infinitesimal deformation to a finite one. There are two ways in which this can arise: either

we’ve made a bad choice for the change of basis and radius of integration that makes it

difficult to give a finite answer for the higher order deformations of the states |P 〉; or, if ∇µ

corresponds to a deformation by Oµ (with, possibly, an infinitesimal change of basis matrix

ωµ) and no choice of basis and radius of integration produces sensible results, the marginal

operator λµOµ isn’t exactly marginal. In fact, we define an exactly marginal operator to
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be one such that equation 2.12 gives sensible results for some choice of radius of integration

and change of basis matrix, in addition to the consistency requirements discussed above.

We therefore let the {Oµ} be exactly marginal operators from here on, unless otherwise

noted.

We assumed thatM has a manifold structure and saw how we might use a connection

on H to transport surface states from one CFT to another (for equation 2.12 is secretly a

version of the parallel transport equation). If we do not already know thatM is a manifold,

we can still use the above discussion to construct a family of CFTs starting from a given

CFT x. We just use equation 2.12 with ∇µ the connection corresponding to deformations

by an exactly marginal Oµ as in equation 2.8 with, possibly, an accompanying infinitesimal

change of basis ωµ. The first-order deformation of |P 〉 is therefore given by λµΓµ |P 〉, while

the second-order term is given by:

1

2
λµλν ((∂µ + Γµ)Γνt) (0) =

1

2
λµλν (∂µΓν + ΓµΓν) |P 〉 . (2.13)

We saw above that, up to a symmetry, we can determine the coefficients of Γµ with

respect to some basis for H. This will determine the coefficients in terms of the CFT data:

OPE coefficients, scaling dimensions of operators, etc. Since the first order changes in these

values can be determined from the first-order changes in the kets |P 〉, it follows that ∂µΓν

is determined by the first-order deformations. Similarly, it’s easy to see that the n-th order

deformation of |P 〉 can involve at most n−1 derivatives of a Γµ; we can therefore bootstrap

our way to all the higher-order terms starting from the first-order one. Thus, we have just

created a new family of CFTs parametrized by the Oµ, which form a basis for the space of

exactly marginal operators. This gives a coordinate neighborhood of x.

We can perform a similar operation at each CFT, defining a coordinate neighborhood

of every CFT. The dimension of the space of exactly marginal operators need not be the

same at every CFT, in which case our attempt to create a manifold structure on the space

of all CFTs fails, but often we can restrict attention to regions of theory space where this

is not a problem. We won’t show this here, but in the regions where the space of exactly

marginal operators is constant, the transition functions between the coordinate charts as
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defined above are smooth. This suffices to show that there exists a manifold structureM

on the space of CFTs. The fact that, in general, the dimension of the space of exactly

marginal operators varies suggests that there might be a more general structure on the

space of CFTs. It has been shown in a certain case, for example in (see [22]), that the

conformal manifold is a variety. As far as I know, there isn’t any literature on the subject,

but it would be interesting to pursue.

2.4 Canonical Deformations and Connections

In this section, we consider several possible canonical connections on M. Let us first

establish some notation. Suppose {Φi} is a basis for H, and that Φi has conformal weights

(hi, h̄i) (and therefore scaling dimension ∆i = hi + h̄i and spin si = hi− h̄i). We will write

Hµi
j for the coefficients of the OPE expansion of Oµ(z)Φi(0):

Oµ(z)Φi(0) =
∑
j

Hµi
jΦj(0)

z1+hi−hj z̄1+h̄i−h̄j
=
∑
j

Hµi
jΦj(0)

r2+∆i−∆j
e−iθ(si−sj). (2.14)

We can divide Hµi
j into a part with integrable and non-integrable singularities:

Oµ(z)Φi(0) =
∑

∆j≤∆i

Dµi
jΦj(0)

r2+∆i−∆j
e−iθ(si−sj) +

∑
∆j>∆i

Fµi
jΦj(0)

r2+∆i−∆j
e−iθ(si−sj), (2.15)

where D and F stand for divergent and finite, respectively. We can extend Dµi
j and Fµij

by zero to the domains where ∆j > ∆i and ∆j ≤ ∆i, respectively, and then we have

Hµi
j = Dµi

j + Fµi
j . (2.16)

If we order the basis in order of increasing scaling dimension, it follows that D is upper

triangular and F only has non-zero entries below the diagonal.

Now, we can define the following three connections. First, we define ∇µ := ∂µ + Γ̂µ as

follows:

∇µ 〈Σ; z1, · · · , zn| =
∫

Σ−∪iDi
d2z 〈Σ; z1, · · · , zn, z | Oµ(z)〉 . (2.17)

In other words, ∇µ is basically the same as the deformation δ for marginal Oµ, except that
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∇ is defined on all ofM, and not just at some reference CFT. In [5], it is shown that

Γ̂µi
j =

2πHµi
jδsi,sj

∆i −∆j
. (2.18)

In particular, Γ̂µ has non-zero entries both above and below the diagonal. Thus, when

computing the product Γ̂µΓ̂ν in the second-order term for the deformed surface states, the

matrix product will involve the infinite sum over intermediate states and so will, in general,

diverge. Presumably, this will be cancelled by the divergences in the ∂µΓ̂ν term, but as we

will see below, a different choice of connection will be able to yield manifestly finite results.

To this end, let us define a new connection, denoted ∇′µ := ∂µ + cµ, as follows. We

define the linear operator ωµ,ε for each 1 > ε > 0 by:

ωµ,εΦi =
∑
j

∫
D−Dε

d2z
Dµi

kδsi,sj
r2+∆i−∆j

Φk. (2.19)

In other words, ωµ,ε corresponds to the insertion of Oµ(z) and integration over ε < |z|< 1,

but only for those operators in the operator product expansion of Oµ(z)Φi(0) with non-

integrable singularities (∆j < ∆i). We can now define ∇′µ as:

∇′µ 〈Σ; z1, · · · , zn| = lim
ε→0

[∫
Σ−∪iDεi

d2z 〈Σ; z1, · · · , zn, z | Oµ(z)〉 −
n∑
i=1

〈Σ; z1, · · · , z|ω(i)
µ,ε

]
.

(2.20)

The connection ∇′ corresponds to the following renormalization procedure. For all corre-

lation functions on Σ, we deform them by the insertion of the operator Oµ(z) and then

performing a selective integration: any time z ∈ Di, we use the OPE of Oµ with the op-

erator sitting at puncture i. This gives us a sum over operators. For those operators with

non-integrable singularities in the OPE, we don’t integrate inside the unit disk. For those

operators with integrable singularities, we integrate over the entire disk Di.

It can be verified that this choice of connection is upper-triangular with respect to

a basis ordered by increasing scaling dimension [5]. Thus, it is a suitable choice for the

computation of higher-order terms in the λ-expansion of correlation functions in a finitely-

deformed theory (we will be able to compute the cµcν term in equation 2.13). We can go one

– 18 –



step further, though, and choose a connection whose coefficients are zero for operators of

different scaling dimensions. We will call this connection ∇̄µ := ∂µ+ c̄µ, and it corresponds

to the minimal subtraction renormalization scheme, wherein one repeats the procedure as

above for ∇′µ, except that one integrates into the unit disks up to radius ε. The integration

from unit radius to radius ε produces terms that diverge as ε → 0, terms that go to zero

as ε → 0, and constant terms. The renormalization scheme of ∇′µ corresponds to keeping

only the constant terms that arise. We refer the reader to [5] for details.

It should be noted that the above-mentioned connections don’t necessarily preserve

symmetries of a theory. When we study the manifold of superconformal field theories, we’ll

be interested in deformations which do indeed preserve supersymmetry. This will require a

connection that is slightly modified from the ones presented in this section. The spirit of

the technique is, however, very similar to the point-splitting studied here; we will present

this method in section 4.

3 Localization in N = (2, 2) Gauged Linear Sigma Models on S2

3.1 Overview of Localization

In [1], it is shown that (2, 2) supersymmetric gauge theories in flat two-dimensional space

(gauged linear sigma models or GLSMs, for short) flow in the infrared to Calabi-Yau nonlin-

ear sigma models (NLSMs, for short), tree-level models of strings propagating in a Calabi-

Yau background spacetime. It is believed that for every Calabi-Yau manifold with Kähler

form ω, there is another Calabi-Yau manifold with the same complex structure and a Käh-

ler form ω′ cohomologous to ω for which the NLSM corresponding to this new Calabi-Yau

is superconformal. The two GLSMs corresponding to the NLSMs differ by a term

∫
d4xd4θT

in the action, where −i∂∂̄T = ω − ω′. Thus, if we restrict ourselves to studying only

obesrvables which are invariant under the addition of such a term, we can study properties

of both NLSMs (one of which is an RG-fixed point) by studying the corresponding properties
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in the GLSM. This was a big development, because GLSMs are relatively easy to study,

and RG-invariant quantities of interest in the infrared NLSM could be computed in the

ultraviolet GLSM. We are interested in computing the partition function, which will turn

out to be an RG-invariant, so a computation in the ultraviolet will yield the corresponding

value in the Calabi-Yau SCFT to which the GLSM flows. We will see that we can perform an

exact computation of the partition function of N = (2, 2) GLSMs on the round two-sphere

and that this computation is independent of the one dimensionful parameter in the theory:

the Yang-Mills coupling. Thus, the partition function of the ultraviolet theory computes

also the partition functions of the corresponding NLSM and the NLSM fixed point to which

they both flow under the renormalization group.

The phenomenon by which the partition function turns out RG-invariant is part of a

recent development in the computation of exact results in field theory called localization.

Localization is a relatively new technique, but it’s inspired by older ideas: BRST quanti-

zation and “topological twisting” ([23]). The idea is to find a fermionic symmetry Q such

that Q2 = 0 (or, more generally, Q2 can be another symmetry of the theory). We can then

modify the Lagrangian of the theory by any Q-exact term
∫
d2z{Q,W} (if Q2 6= 0, then W

needs to be invariant under Q2 up to total derivatives). By construction, this modification

doesn’t change the Q-invariance of the theory. More importantly, this modification leaves

the expectation values of Q-closed observables invariant. To see this, let φα be a set of

Q-closed observables and define:

〈∏
α

φα

〉∣∣∣∣∣
t

=

∫
[DΦ] exp

(
−
∫
d2z (L+ t{Q,W})

)∏
α

φα. (3.1)

If we shift any φα′ by a Q-exact term {Q, ϕ}, then the correlation function remains un-

changed. To see this, use the Jacobi identity (we’re going to be a little reckless with the

ordering of the operators for notational clarity, though the proof still goes through):

δ

〈∏
α

φα

〉∣∣∣∣∣
t

=

〈
{Q, ϕ} ·

∏
α6=α′

φα

〉∣∣∣∣∣∣
t

=

〈Q, ϕ · ∏
α 6=α′

φα


〉∣∣∣∣∣∣

t

−
∑
β

〈ϕ·{Q, φβ}·
∏

α 6=α′,β
φα 〉|t

(3.2)
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We’ve written the action of Q as an anti-commutator; W needs to have fermionic statistics

for the Lagrangian to be a scalar, so we do indeed take the anticommutator {Q,W}.

However, the φα can have either commuting or anti-commuting statistics, so we take {Q, φα}

to mean an anti-commutator or commutator depending on whether φα is fermionic or not,

respectively. We haven’t been careful about minus signs coming from the super-Jacobi

identity, however, since they don’t affect our result. Now, since the φα are Q-closed, each

term in the sum on the RHS of the above equation is 0, and because Q is a symmetry, the

first term on the RHS vanishes. Thus, the correlation function of any product of Q-closed

operators depends only on the Q-cohomology classes of the operators. In particular, any

correlator with at least one Q-exact operator vanishes. It follows that the path integral

3.1 is independent of t: taking derivatives with respect to t only brings down powers of a

Q-exact term.

Since the path integral 3.1 is t-independent, we can compute the correlation functions

of products of Q-closed operators by taking the t→∞ limit. In the BRST formalism, this

would correspond to actually fixing a gauge, whereas finite t corresponds to superpositions

of gauge choices (Feynman gauge, for example). In any case, taking the t → ∞ limit

restricts the path integral to a sum (or integral) over the minima of the {Q, V } term (all

other paths give zero contribution) times a one-loop determinant factor. Each stationary

point is weighted by the value of the classical action
∫
L evaluated at that point. We will

see the mechanics of this process in more detail in the case of interest to us later in this

section. For now, however, we turn to studying N = (2, 2) supersymmetric gauge theories

on the round two-sphere.

3.2 N = (2, 2) supersymmetric gauge theories in two dimensions

In flat space, gauge theories with 2, 2 supersymmetry can be constructed by dimensional

reduction from N = 1 theories in four dimensions [1]. The only new subtlety that arises in

two dimensions is the choice of matter multiplet. In four dimensions, the matter multiplet

is chosen to be in a chiral or anti-chiral representation of the SUSY algebra: DΦ = 0 or

DΦ = 0. In two dimensions, however, it is not inconsistent to choose D+Φ = D−Φ = 0 (or
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the barred version of this). These are called twisted chiral superfields (or anti-twisted-chiral

superfields). Chiral matter multiplets couple canonically to a twisted chiral field strength

and vice versa. The two types of theories are related to each other via mirror symmetry.

Regardless of our choice of matter representation, the field content of two-dimensional

GLSMs consists of the vector multiplet (Aµ, σ, λ, λ̄,D) and the matter multiplet (φ, ψ, ψ̄, F ).

Here, Aµ is the gauge potential, σ = σ1 + iσ2, φ, F are complex scalars, λ, λ̄, ψ, and ψ̄

are Dirac spinors, and D is a real scalar. D and F are the auxiliary scalars in the theory.

The vector multiplet transforms under the adjoint representation of the gauge group G and

the matter multiplet transforms under some (not necessarily irreducible) representation R

of G. The flat-space theory is invariant under the full N = (2, 2) superconformal algebra.

However, when the theory is coupled to the two-sphere, it’s not possible to preserve both R

symmetries; at most, one SU(2 | 1) sub-algebra is preserved. If the R-symmetry preserved

is R, then SU(2 | 1)A is preserved; otherwise, SU(2 | 1)B is preserved. There are, however,

two different ways to construct theories with SU(2 | 1)A symmetry, depending on whether

the matter multiplet used is chiral or twisted chiral. Mirror symmetry exchanges chiral and

twisted chiral multiplets, R and A, SU(2 | 1)A and SU(2 | 1)B. Thus, a theory formulated

with a vector R-symmetry R and chiral multiplets is isomorphic to one formulated with

an axial R-symmetry and twisted chiral multiplets. In [8, 9], the partition function is

computed in theories with chiral multiplets and a vectorlike R-symmetry. Here, we will

present the computation of the partition function of theories with twisted chiral multiplets

and a vector-like R-symmetry. We will follow the approach of [10], though portions of the

following were developed independently by the author.

The Lagrangian of the SU(2 | 1)B invariant theory on the two-sphere has action S =
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∫
S2
d2x
√
hL, where L is the sum of four terms:

Lv.m. =
1

2g2
Tr
{

(F12)2 +D2 +DµσD
µσ̄ +

1

4
[σ, σ̄]2 + iλ̄γµDµλ

− i
2
λ[σ, γ3λ] +

i

2
λ̄[σ̄, γ3λ̄] +

λ̄λ

r

}
(3.3)

Lt.c.m. = F̄F + iψ̄γµDµψ +Dµφ̄D
µφ− iφ̄Dφ+ iψ̄σψ − ψ̄γ3σ2ψ

+ φ̄(σ2
1 + σ2

2)φ+ iψ̄γ3(P−λ̄+ P+λ)φ− iφ̄(P−λ+ P+λ̄)γ3ψ (3.4)

LW = W ′(φ)(iF )− 1

2
W ′′(φ)ψψ +

W (φ)

r
+ c.c. (3.5)

LFI = Tr
(
−iξD +

iθ

2π
F12

)
(3.6)

Here, r is the radius of S2, g is the gauge-coupling, F12 is the curvature of the connection Aµ

(F12 = ∂1A2−∂2A1− i[A1, A2]), Dµ is the gauge- and diffeomorphism-covariant derivative,

P± is defined as in appendix A, W is an arbitrary, gauge-invariant, holomorphic function,

and ξ and θ are the Fayet-Iliopoulos and topological parameters. There is a Fayet-Iliopoulos

and topological term for every U(1) factor in G; we will refer to both collectively as the

Fayet-Iliopoulos term, unless otherwise stated. The vector R-symmetry R acts axially on

ψ and vectorially on λ: ψ 7→ eiαγ3ψ, λ 7→ eiαλ, σ 7→ e−2iασ. The axial R-symmetry

A would act oppositely on ψ and λ, but the λ̄λ
r term clearly violates such a symmetry;

this is a consequence of the fact mentioned above that it is impossible to preserve both

R-symmetries on the two-sphere.

Part of the difficulty of putting the GLSM on the two-sphere is that, in principle, if we

could find a covariantly constant spinor ∇µε = 0 on S2, then we could just promote the

flat-space Lagrangian and supersymmetry variations to diff-covariant versions with SUSY

parameter ε by the minimal prescription scheme and this would guarantee the SUSY-

invariance of the S2 theory. Such a covariantly constant spinor does not exist, however,

so we must make do with conformally invariant Killing spinors (see section A.2 for explicit

realizations of ε and ε̄):

∇µε =
iγµε

2r
, ∇µε̄ =

iγµε̄

2r
. (3.7)

This is why 1/r corrections appear in the Lagrangian and the SUSY variations (see below).
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In principle, one could formulate a supersymmetric theory on curved space by formulating

the theory as a supergravity theory and then taking the Planck massMp →∞. This freezes

out the gravitational degrees of freedom; we refer the reader to [26] for details. In practice,

however, it is usually easier to just compute the corrections to the flat-space Lagrangian

order by order in 1/r. This is what I did. Given that we have replaced the constant SUSY

parameters with Killing spinors, it can be verified that the above action is invariant under

the following SUSY variations for the vector multiplet

δσ = ε̄λ̄, δσ̄ = −ελ, δAµ =
i

2

(
ε̄γµγ3 + εγµγ3λ̄

)
δλ =

(
D − iF12 −

i

2
[σ, σ̄]γ3

)
ε− iDµσ̄γ

µε̄+
σ̄

r
ε̄

δλ̄ =

(
−(D + iF12) +

i

2
[σ, σ̄]γ3

)
ε̄+ iDµσγ

µε− σ̄

r
ε

δD = − i
2
Dµ

(
εγµλ̄− ε̄γµλ

)
− i

2
[ε̄γ3λ̄, σ̄]− i

2
[εγ3λ, σ]

(3.8)

and the following SUSY variations for the twisted chiral multiplet.

δφ = (P−ε+ P+ε̄)ψ δφ̄ = − (P−ε̄+ P+ε) ψ̄

δψ = (P−ε+ P+ε̄) (iF )− iσ1φ (P−ε̄+ P+ε)− σ2φ (P−ε̄− P+ε) + iγµ (P−ε̄+ P+ε)Dµφ

δψ̄ = (P−ε̄+ P+ε) (iF̄ ) + iφ̄σ1 (P−ε+ P+ε̄)− φ̄σ2 (P−ε− P+ε̄)− iγµ (P−ε+ P+ε̄)Dµφ̄

δF = (P−ε̄+ P+ε)σ1ψ + i(P+ε− P−ε̄)σ2ψ + (P−ε̄+ P+ε)γ
µDµψ − (ε̄P+λ− εP−λ̄)φ

δF̄ = (P−ε+ P+ε̄) ψ̄σ1 − i(P+ε̄− P−ε)ψ̄σ2 + (P−ε+ P+ε̄)γ
µDµψ̄ − φ̄(εP+λ̄− ε̄P−λ)

(3.9)

We can write δ = δε + δε̄ and compute [δε, δε̄] acting on the fields to see whether δε and δε̄

really realize the algebra SU(2 | 1) on the fields. Doing this reveals (letting α := −iε̄ε/2r
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and ξµ = iε̄γµε):

[δε, δε̄]σ = ξµDµσ − 2iασ

[δε, δε̄]σ̄ = ξµDµσ̄ + 2iασ̄

[δε, δε̄]λ = ξµDµλ+
1

4
∇µξνγµνλ+ iαλ

[δε, δε̄]λ̄ = ξµDµλ̄+
1

4
∇µξνγµν λ̄− iαλ̄

[δε, δε̄]D = iξµDµD

[δε, δε̄]Aµ = ξρFρµ

(3.10)

for the gauge multiplet and

[δε, δε̄]φ = ξµDµφ

[δε, δε̄]φ̄ = ξµDµφ̄

[δε, δε̄]ψ = ξµDµψ +
1

4
∇µξνγµνψ + iαγ3ψ

[δε, δε̄]ψ̄ = ξµDµψ̄ +
1

4
∇µξνγµνψ̄ − iαγ3ψ

[δε, δε̄]F = ξµDµF

[δε, δε̄]F̄ = ξµDµF̄

(3.11)

for the matter multiplet. Thus, [δε, δε̄] acts by an isometry with parameter ξµ and an

R-symmetry with parameter α. This is consistent with the commutation relation

{S̃α, Q̃β} = γmαβJm −
1

2
CαβA

in equations B.3. Furthermore, it can be verified that [δε1 , δε2 ] is a gauge transformation with

parameter ε2γ3ε1σ, and similarly, [δε̄1 , δε̄2 ] is a gauge transformation with gauge parameter

−ε̄2γ3ε̄1σ̄.

Finally, we note that the gauge kinetic and matter kinetic actions are δ-exact:

ε̄ε

∫
d2x
√
h Lv.m. = δε̄δε

∫
d2x
√
h Tr

(
−λ̄λ+

σ̄σ

r

)
ε̄ε

∫
d2x
√
h Lt.c.m. = δε̄δε

∫
d2x
√
h

(
i(φ̄F − F̄ φ) +

φ̄φ

r

)
.

(3.12)
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ε̄ε can be easily verified to be covariantly constant, i.e. a constant, thanks to equation

3.7; moreover, since [δε, δε̄] is a symmetry of the theory, it follows that equations 3.12 are

still true with δε and δε̄ switched. Moreover, when we choose which supercharge to use in

localization, (2, 2) supersymmetry will give us several choices. Equations 3.12, along with

the fact that all commutators of δε and δε̄ with themselves and each other are symmetries,

tell us that whatever Q we choose for localization, the kinetic part of the GLSM action is

Q-exact. In particular, this means that the partition function of the GLSM is independent

of g2, the Yang-Mills coupling of the theory. g2 is the only dimensionful parameter in the

theory; it follows that, as noted above, the partition function is RG invariant. Moreover,

once we specify the localizing supercharge, we will find that the Fayet-Iliopoulos action is

also Q-exact; the partition function therefore depends only the twisted superpotential W .

Let us see in more detail why the Fayet-Iliopoulos action is exact; to do this, we

construct our localizing supercharge Q. Write δε = εαQα and δε̄ = ε̄αQ†α. This defines the

operators Q and Q†. Now, let ε be a commuting spinor given explicitly by

ε = e−i
φ
2

 sin θ/2

−i cos θ/2

 . (3.13)

This is just one of the generating elements of the two-dimensional space of conformal spinors

satisfying 3.7. Let ε̄ = Cε∗; then it can be verified that:

ε̄ε = −ε†C2ε = ε†ε = 1

εε = ε̄ε̄ = 0.

(3.14)

The second of relations 3.14 follows from the commuting nature of ε. Now that all of these

definitions are in place, we let Q = εαQα + ε̄αQ†α. This will be our localizing supercharge;

because ε is commuting, Q is anti-commuting, as expected. Moreover, it’s easy to see that

Q2 has only terms with {Q(†)
α , Q

(†)
β }; but these are symmetries of the theory by virtue of the

discussion above about [δε, δε̄], [δε1 , δε2 ], and [δε̄1 , δε̄2 ]. Thus, Q is as nilpotent as we need it

to be from the discussion in 3.1. As mentioned above, 3.12 guarantees that the gauge and

twisted chiral kinetic actions are Q-exact. Moreover, it’s easy to check that, up to total
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derivative terms ε̄γµεDµσ and ε̄γµεDµσ̄, D and F12 are Q-exact:

∫
d2xD =

∫
d2xQ

(
ε̄λ− λ̄ε

)
∫
d2xF12 = i

∫
d2xQ

(
ε̄λ+ λ̄ε

)
.

(3.15)

Another way to understand the Q-exactness of the Fayet-Iliopoulos and topological

action is to note that the Lagrangian LF.I. is a special case of a more general type of term

that can be added to the action, a superpotential term. The superpotential action is the

the top component of a chiral multiplet field whose R-charge is 2. For R-charge 2, the

supersymmetry variation of the spinor in a chiral multiplet is, up to a total derivative, the

top component of the multiplet (see, for example, [9]). Thus, the integrated top component

of a chiral multiplet is exact. But the field strength multiplet is exactly such a multiplet,

and it can be shown that D + iF12 is the top component of this multiplet. Thus, the F.I.

action is Q-exact.

Since LF.I., Lt.c.m, and Lv.m. are all Q-exact, the partition function depends only on the

parameters of the twisted super-potential. However, we can compute the partition function

with any linear combination of three contributions to the action. We will choose to use

t(Lt.c.m. +Lv.m. + i
2Tr(D)) +LW as the action with which we localize and take the t→∞

limit. In this limit, when we compute the path integral computing the partition function,

we will find that points in field space that are not minima of Lt.c.m. +Lv.m. + i
2Tr(D) have

vanishingly small contributions to the path integral. Thus, the path integral localizes to

the minima (we will denote these collectively by ϕ0) of Lt.c.m. + Lv.m. + i
2Tr(D). Writing

the expansion ϕ = ϕ0 + 1√
t
ϕ̃ for the fields of the theory and expanding the action around

the fixed points ϕ0, we discover that the path integral simply reduces to a sum (or integral)

over the minima of the localizing action, weighted by both exp {−
∫
d2x
√
h LW } and a

1-loop determinant arising from the quadratic term in the expansion of the action around

the fixed points. (The t→∞ limit is formally the same as the h̄→ 0 limit.) Moreover, as

shown in [23], whenever a theory has a fermionic symmetry Q, the path integral defining

the expectation value of Q-invariant observables reduces to an integral over fixed points of

Q times a one-loop determinant. Thus, we only have to examine field configurations that
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are fixed points both of Q and the localizing Lagrangian. We will perform this computation

in a moment. First, however, we have to address the nuance of gauge-fixing, to which we

turn in the next subsection.

3.3 Gauge-Fixing and QBRST

If we attempted to compute the path integral using just the action
∫
d2x
√
h L, we would

encounter divergences arising from the existence of zero modes. These zero modes arise

because of the large gauge redundancy in our description of the physics. In the present case,

the problem can be addressed by a slight modification of the normal BRST gauge-fixing

scheme. We will encounter some difficulties because we’d like for the localizing supercharge

Q and the BRST supercharge to interact in a way that guarantees that the localization

argument still carries through in a convenient way. We will address these difficulties in a

moment; let us first, however, review the standard BRST method for gauge fixing.

In the BRST method, one introduces the operator QBRST , which is anticommuting

and acts as an infinitesimal gauge transformation with fermionic parameter/field c on the

physical fields of the theory. It follows that any gauge-invariant action is annihilated by

QBRST . One introduces moreover the Grassmann-odd field c̄ and the Grassmann-even

field b, and declares the following BRST variations of the “ghost” fields c, c̄, b (all three of

which transform in the adjoint representation, i.e. c = cAtA, where the tA are infinitesimal

Hermitian generators of G):

QBRST c = icc = icAcBtAtB =
i

2
cAcB[tA, tB]

QBRST c̄ = b, QBRST b = 0.

(3.16)

It can be verified that Q2
BRST = 0 on all fields. Thus, by the same arguments as we

saw above, the modification of the action by any QBRST -exact term doesn’t change the

result. We choose to modify the action by a term

Sg.f. = QBRST
∫
d2x
√
h Tr

(
c̄

(
G − 1

2
b

))
=

∫
d2x
√
h Tr

(
bG − c̄ (δgauge(c)G)− 1

2
b2
)
,

(3.17)
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where G is some gauge-fixing functional in the adjoint representation. Different choices of G

correspond to different gauge fixing choices. We note that b appears at most quadratically

in the action Sg.f., so we can replace it with its equation of motion, b = G. The result is:

Sg.f. =

∫
d2x
√
h Tr

(
1

2
G2 − c̄ (δgauge(c)G)

)
. (3.18)

We note that G = ∇µAµ is the normal choice for the gauge-fixing functional, but we will

be interested in a slightly different gauge choice later. For now, we leave G unspecified.

The nuance that arises in the present case is that the action that we need to use for

the path integral isn’t just the action of equations 3.3-3.6; we need to actually add Sg.f. to

the action. With the action thus modified, it is no longer guaranteed that the total action

is Q-exact. We need to find some other fermionic symmetry operator that combines both

Q and QBRST to carry through the localization argument. In order to do this, we need to

generalize the discussion of QBRST from above. Instead of Q2
BRST = 0, we let Q2

BRST be a

gauge transformation by some parameter a0. This is effected by taking:

QBRST (non-ghost fields) = δgauge(c)(non-ghost fields) QBRST c = a0 + icc

QBRSTa0 = −(Q+QBRST )∆ QBRST c̄ = b QBRST b = i[a0, c̄],

(3.19)

where ∆ is the gauge parameter that appears in the action of Q2 on the physical fields.

Moreover, we take the following supersymmetry variations of the ghost fields:

Qc = Qa0 = Qc̄ = 0 Qb = (ξµ∇µ + δgauge(∆))c̄. (3.20)

Now, we can compute:

Q2
BRST (non-ghost fields) = δgauge(a0)(non-ghost fields)

Q2
BRST c = i[a0, c] Q2

BRST c̄ = i[a0, c̄]

Q2
BRSTa0 = −QBRST (QBRST +Q)∆

Q2
BRST b = i[a0, b] + i{QBRSTa0, c̄},

(3.21)
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Q2 (non-ghost fields) = (Lξ +R+ δgauge(∆)) (non-ghost fields)

Q2c = Q2a0 = Q2c̄ = 0

Q2b = i{Q∆, c̄},

(3.22)

where Lξ is a Lie derivative in the direction of ξµ, the Killing vector defined above, and R

is the R-symmetry which appears in Q2. Finally, we compute

{QBRST ,Q}(non-ghost fields) = 0

{QBRST ,Q}c̄ = (Lξ + δgauge(∆)) c̄

{QBRST ,Q}b = (Lξ + δgauge(∆))b+ i{QBRST∆, c̄}.

(3.23)

We have not computed {QBRST ,Q} on c, a0 because we will take our action to be Q̂V :=

(Q+QBRST )V , where V does not contain any terms with a0 or c, and since all we need for

the localization argument to carry through is that Q̂2V = 0, Q̂2a0 and Q̂2c are irrelevant for

our purposes. It follows from the three sets of equations above that, if we take the R-charges

of c̄ and b to be zero, then Q̂2 acts as a combination of isometry in the direction of ξµ,

an R-symmetry as before, and a gauge transformation with parameter ∆ + a0. Moreover,

since the Q-exact parts of the non-gauge-fixed action were Q of a gauge-invariant quantity,

it follows that those same terms are also Q̂-exact. Now we take the gauge-fixing action to

be:

Sg.f. = Q̂

∫
d2x
√
h Tr

(
c̄

(
G − 1

2
b

))
=

∫
d2x
√
h Lgh. (3.24)

This is actually different from the gauge-fixing action described above, since we have both

a term arising from Q acting on the Lagrangian and since QBRST acts differently from

the operator as it was originally presented. The terms arising from the action of Q are

−Tr(c̄QG) and 1
2Tr(c̄Qb). Both of these terms can be absorbed into the definition of c. The

term arising from the slight difference in our definition of QBRST is i
2Tr(c̄[a0, c̄]), and cannot

be ignored, though it won’t present any difficulties with the localization computation, to

which we turn now.
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3.4 The Localization Computation

Let us briefly summarize where we stand. We have constructed a gauge-fixed action given

by a Lagrangian density with five parts: Lv.m.,Lt.c.m.,LF.I.,Lgh, and LW . This action has a

fermionic symmetry Q̂ given as the sum of a generator of the algebra of supersymmetries of

the non-gauge-fixed lagrangian and a BRST operator. The first four terms of the Lagrangian

density listed above are Q̂ exact and Q̂-closed, so the path integral computing the partition

function of our GLSM is independent of the parameters of this part of the Lagrangian,

i.e. the partition function depends only on the parameters of the twisted superpotential,

which are the complex structure parameters of the quantum Kähler moduli space of the

Calabi-Yau to which the GLSM flows in the infrared. We can therefore compute the path

integral with any linear combination of the Q̂-exact terms. We choose to compute the path

integral with Lagrangian

t (Lv.m. + Lt.c.m. + iTr(χD) + Lgh) + LW

and take the t → ∞ limit. (Here, we’ve chosen not to include the full Lagrangian LF.I.,

but just the actual Fayet-Iliopoulos term; χA is a set of couplings for the Fayet-Iliopoulos

term). As noted above, when we take the t→∞ limit, the result is that the path integral

reduces to an integral over the minima of the localizing Lagrangian, weighted by a one-loop

determinant and the factor exp {−
∫
d2x
√
h LW }. Moreover, as shown in [23], whenever

a theory possesses a fermionic symmetry, the integral localizes to the fixed points of that

symmetry operator; in the present case, we have both Q and QBRST . Finally, we note that

we wish to exclude from consideration fixed points with non-zero values for the fermions

and the ghost operators of the theory, since we do not want to give vacuum expectation

values to Grassmann variables. Keeping this in mind, we examine the bosonic part of the

localizing Lagrangian:

(3.25)Lbos = Tr
(

(F12)2 +D2 + iχAD − iDφφ̄+DµσD
µσ̄ +

1

4
[σ, σ̄]2 + G2

)
+ F̄F +Dµφ̄D

µφ+ φ̄(σ2
1 + σ2

2)φ.
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We can let D̃A = DA + i
2(χAδA − φ̄tAφ), with δA = 1 when A is an index of a U(1) factor

of G and 0 otherwise. Then, the terms involving D can be rewritten as

∑
A

(
(D̃A)2 +

1

4
(χAδA − φ̄tAφ)2

)
.

In this form, the Lagrangian is easily seen to be positive definite with the natural reality

conditions imposed on the fields (e.g. φ̄ = φ†, etc.). Thus, the minima of Lbos are those

field configurations which make it 0. This demands, therefore, that:

F12 = D̃ = Dµσ = Dµσ̄ = [σ, σ̄] = F = Dµφ

= φ̄(σ2
1 + σ2

2)φ = G = χAδA − φ̄tAφ = 0.

(3.26)

But, taking into account also that Qλ = 0, it follows that σ = σ̄ = 0. So the only fields

which we do not immediately see to be zero at the minima of Lbos are Aµ and φ. We do

have, however, that Aµ is a flat connection, though we have not yet specified the gauge-

fixing functional G. A usual choice for G is ∇µAµ, which would fix Aµ = 0. There will,

however, turn out to be a more convenient choice for G; we will come to it in a moment. Let

us first note that F12 = 0 means that Aµ is gauge equivalent to 0, and therefore that any

φ satisfying equation 3.26 is gauge-equivalent to a constant configuration (since Dµφ = 0).

However, even among constant φ satisfying φ̄tAφ = χAδA (a D-term equation), there’s the

residual global gauge symmetry that takes D-term solutions to each other. Thus, up to

gauge transformations, the path integral we’re considering localizes to the following space

S of zeroes of the action:

S = {φ ∈ R | ∂µφ = 0, φ̄tAφ = χAδA}/Gglobal. (3.27)

We want to choose G so that the satisfaction of G = 0 fixes the gauge completely. This,

for example, will not be the case if we choose G = ∇µAµ since that would only fix Aµ = 0

and leave a residual global gauge freedom in φ. Moreover, we can choose G that will be

slightly more convenient when we compute 1-loop determinants; notice that, since the saddle

points of the action have a non-zero value for φ, the quadratic expansion of the Lagrangian
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around the saddle points will include terms like ∂µφ̄Aµφ0, where φ0 is the saddle point and

φ̄ and Aµ are the fluctuations around the saddle point configurations. These terms are not

particularly convenient for the calculation of one loop determinants, and we can eliminate

them by a clever choice of G. To this end, we choose:

GA = (∇µAµ)A − i

2
φ̄tAφ0 +

i

2
φ̄0t

Aφ. (3.28)

This choice of G requires some explanation, since we must choose G before we localize, but

φ0 makes reference to the saddle points of the action that we examine only once we localize.

We have seen, however, that no matter what we choose for G, the path integral localizes to

a neighborhood U in field space of the gauge orbit of S. We can choose U to be sufficiently

small that all fields can be written uniquely as a gauge-fixed saddle point (i.e. element

of S) plus a fluctuation (the fluctuation can be both a physical and a gauge fluctuation

away from saddle points). This is trivial for all fields but φ. For φ, we let φ0 denote the

projection of φ onto S. This is what we mean by φ0 in G. It follows that G is only defined

on U ; but that’s all right, since the value of G away from U is irrelevant. Now, we wish to

solve G = 0. We already saw that Aµ is pure gauge and φ is gauge equivalent to an element

of S. We write Aµ = ∇µε and φ = exp{iεAtA}φ0. Then, the condition G = 0 is

∇2ε+
i

2
φ̄0t

Aeiε
BtBφ0 −

i

2
φ̄0e
−iεBtB tAφ0 = 0. (3.29)

Clearly, ε = 0 is a solution of this equation; this corresponds to Aµ = 0 and φ = φ0. There

may, however, be solutions to equation 3.29 which are non-trivial. If the set of solutions

is of measure zero with respect to S, then we are justified in ignoring such solutions; this

needs to be checked, however. Suppose, to this end, that G = 0 in some finite region around

0 in ε-space. Then, the infinitesimal version at ε = 0 of equation 3.29 would be satisfied:

∇2ε−
(

1

2
φ̄0t

AtBφ0 +
1

2
φ̄0t

BtAφ0

)
εB. (3.30)
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Now, ∇2 has a discrete spectrum of eigenvalues on S2 and the matrix multiplying εB in

parentheses on the RHS of the above equation can easily be checked to be Hermitean.

Thus, we can decompose ε along an eigenbasis for ∇2 − 1
2

(
φ̄0t

AtBφ0 + φ̄0t
BtAφ0

)
. Since

the spectrum of ∇2 is discrete, the values of φ0 for which we can find a solution to the

equation above are at most a discrete subset of S. The case away from ε = 0 is nearly

identical, except that the infinitesimal expansion around some nonzero ε0 will produce

terms like φ̄0e
−iε0·ttAtBφ0εB; however, the corresponding matrix will still be Hermitean

and have eigenvalues that match ∇2 only on a discrete subset of S. It follows that, except

for a locus of non-zero solutions to GA = 0 that has measure zero compared to S, the path

integral localizes to S. Thus, we can compute

Z =

∫
S
volSe−SWZ1−loop, (3.31)

where Z1−loop is the functional determinant arising from the term quadratic in the fields

when the action is expanded around its stationary points and SW is the superpotential

action evaluated at the stationary point. In an Abelian theory with gauge group U(1)Nc

and with matter in a Nf -dimensional representation of the gauge group, we can form the

Nf ×Nc matrix M whose components are

MA
I = qAI (φ0)I .

M is a matrix that depends on the choice of φ0 ∈ S. It turns out that Z1−loop = det(M †M);

we refer the reader to [10] for the details of this computation. We note, however, that our

particular choice for G removes the terms from the quadratic action that couple φ and Aµ,

so that the quadratic action only couples fields with their Hermitean conjugates. The final

answer for the partition function is

Z =

∫
dNfφ ∧ dNf φ̄

(2π)Nc
det(M †M)

∏
A

δ(φ̄tAφ− χA)eSW (Y,Ȳ ), (3.32)
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where δ is the Dirac delta function which restricts the integral to be only over S×Gglobal. As

mentioned above, the partition function can be used to compute an interesting quantity on

the superconformal manifold; we turn now to the elaboration and proof of this statement.

4 Kähler Potential of the Two-Dimensional N = (2, 2) Superconformal

Manifold

It has been shown that, if one restricts to the space M of two-dimensional, N = (2, 2)

supersymmetric conformal field theories, a manifold structure also arises, and that the

metric on the superconformal manifold is Kähler. The manifold is locally a product Sc×Stc,

and the exactly marginal operators are the top components of chiral and twisted chiral

primary operators of (R,A)-charges (2, 0) and (0, 2) respectively. In particular, this means

that the conformal manifold is complex: heuristically, this corresponds to the pairing of

chiral and anti-chiral exactly marginal deformations. The Kähler requirement is that, if

one computes the two-form ω defined as follows

ω(X,Y ) = g(X, JY ),

with g the Zamolodchikov metric and J the almost-complex structure on M, then ω is a

closed (1, 1) form onM. Moreover, the metric factorizes into a sum gc ⊕ gtc, where gc and

gtc are the metric in the chiral and twisted chiral directions.

Two-dimensional CFTs can be canonically placed on a round two-sphere S2 via stere-

ographic projection in the following way. The pullback of the flat metric on R2 under the

stereographic projection π : S2 → R2 ∪ {∞} = P1 is, up to a conformal factor, the round

two-sphere metric:

g∗(x) =
1

Ω2(x)
gS2(x), (4.1)

where

Ω(x) = 1 +
|x|2

4r2
. (4.2)

In a theory with a Lagrangian description, we can put the theory on the round two-sphere
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by promoting the flat-space Lagrangian to a diff-invariant one with round two-sphere metric

providing the diff-invariant volume element. Classically, the theory retains its conformal

symmetry as a Weyl symmetry: under a transformation g 7→ 1
Ω2 g, all the fields transform

with Weyl weights equal to their scaling dimensions in the flat-space theory. Under a Weyl

symmetry, a correlation function transforms like

〈φ1 · · ·φn〉 7→ Ω
1
2

∑n
i=1 ∆i〈φ1 · · ·φn〉

It is not in general possible to put any CFT on a sphere in this way and preserve all the

flat space symmetries. We are interested in the two-dimensional, N = (2, 2) case, and it

turns out that it is only possible to preserve one of the two massive SU(2 | 1) subalgebras

discussed in the previous section and the appendix. Moreover, using the same technique

of supersymmetrizing a theory by constructing the appropriate supergravity theory and

taking the Mp → ∞ limit, it can be shown (see [2]) that the only ambiguities in the par-

tition function arise from finite supergravity counterterms and they produce the following

equivalence:

Z ∼ Ze−F (λ)−F̄ (λ̄),

where F is a holomorphic function on the conformal manifold. This is precisely a Kähler

ambiguity, and we saw above that the conformal manifold is Kähler in the case at hand, so

we might suspect something like

Z = e−K,

where K is the Kähler potential of the manifold. Thus, whenever we compute the partition

function of a 2D SCFT coupled to S2 as a function of the λ, as long as we preserve one of

the two SU(2 | 1)’s of the theory, the answer won’t depend on the renormalization scheme

except potentially through a Kähler ambiguity. In this section, we present a revised version

of a proof given in [2] that if we compute the partition function ZBS2 of a N = (2, 2) CFT on

the two sphere while preserving SU(2 | 1)B-invariance in a theory formulated with chiral

matter (our localization computation above was for the mirror case: SU(2 | 1)A and twisted
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chiral matter; this gives the same answer), then

ZBS2 = e−KC , (4.3)

where KC is the Kähler potential for gc. Properly speaking, the partition function ought

to be understood not as a function on the conformal manifold, but as a section of a line

bundle overM.

To the end of proving equation 4.3, we define the following renormalization scheme:

Γµj
i =

Hµj
i 23−∆r2−∆

2−∆ ∆i 6= ∆j

0 ∆i = ∆j

(4.4)

where ∆ = 2 + ∆j −∆i and r is the radius of S2. We can see from equation 4.4 that Γµ

would be singular at ∆i = ∆j ; we resolve this problem, however, by demanding that Γµ

not mix operators of equal dimensions. Let us now say a word about the origin of the weird

term involving powers of r and 2 in equation 4.4. We might have naively tried to let

ΓµΦi =
1

π

∫
d2x
√
h Oµ(x)Φi(0) =

1

π

∑
j

Hµi
jΦj

∫
d2x
√
h

(
1 + |x|2

4r2

)∆µ+∆i−∆j
2

−2

|x|∆µ+∆i−∆j
,

where we have included a normalization factor of 1/π for simplicity in the final result. The

integral on the RHS of the above equation diverges in the ultraviolet for certain values of ∆

(where ∆ is as defined above), however. We can, though, define that integral by analytically

continuing in ∆; when Re(∆) < 2, the integral converges and is equal to precisely the factor

multiplying Hµj
i in Γµj

i as defined in equation 4.4. That factor makes perfect sense away

from ∆ = 2, so we have no difficulties in analytically continuing to ∆ > 2.

In the case at hand, we have to be sure to address the nuance that we want Γµ to

preserve SU(2 | 1)B; to do this, we let Γµ be as above when µ runs over the indices in

the chiral direction and zero when µ runs over the indices in the twisted chiral direction.

We need Γµ = 0 for µ in the twisted chiral directions because our procedure is an analytic

continuation in the Weyl weight of Oµ, but we need Oµ to have a particular A-charge and
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primariness dictates an equality between A-charge and Weyl weight. Analytic continuation

would therefore break the SU(2 | 1)B symmetry. It can be verified that Γµ preserves SU(2 |

1)B symmetry for the µ in the chiral directions. Moreover we can compute the second-

order deformation due to Γµ according to equation 2.13; since we are computing the Kähler

potential we are interested in the identity component of the second-order deformation of

the identity operator. First, note that Γµ11 = 4πr2Oµ. Thus, the term ∂µΓν gives no

contribution to the second-order deformation of the identity. We therefore have only the

ΓµΓν term to consider. The first column of Γν only has a non-zero entry in the row

corresponding to Oν , and that entry is 4r2. Thus, the identity-identity entry of ΓµΓν is 4r2

times the identity component of

1

π

∫
d2x
√
h Oµ(x)Oν(0).

But this is precisely −1
4r2 gµν . It follows that the second-order deformation of the partition

function is −gµν ; note, however, that µ, ν runs only over the indices of the chiral deforma-

tions. We can now complete the proof of 4.3:

∂µ∂ν logZBS2 = −gµν = −∂µ∂νKC . (4.5)

Equation 4.3 follows from exponentiating both sides and using a supergravity counterterm

to set ZBS2 equal to e−KC . As mentioned above, we can now use the localization computation

for the GLSM above to compute the Kähler potential for the SCFTs which arise as low-

energy limits of flat-space gauge theories.

5 Conclusion

We have shown that the structure of the conformal manifold combined with the power of

localization turn out to be a very potent combination. Not only can we study certain classes

of CFTs wholesale, but we also have means to compute certain quantities of interest to the

conformal manifold exactly. There remain, however, many interesting questions in this

formalism, the biggest of which is the study of singular points on the conformal manifold.
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A deeper understanding of these singularities would reveal more insight about the nature

of the conformal manifold. Moreover, the computations here along with those in [9] provide

a test for mirror symmetry; these results can be used to find new mirror manifolds.

The conformal manifold formalism provides a new way of structuring and organizing

the information that we have on CFTs. The results we have so far are promising, and the

hope is that by “zooming out” in this way, we will be able to gain insight about CFTs and

quantum field theory in general.

A Spinor Conventions

A.1 Dirac Spinors on S2

In this section, we review our spinor conventions for spinors on S2. We will use two-

dimensional Dirac spinors, which furnish a reducible representation of the Euclidean version

of the 2-d Lorentz group, U(1). We will use µ, ν for two-dimensional space indices, m,n, p

for three dimensional indices (when we wish to include the chirality matrix), and α, β for

spinor indices. In a frame basis for the tangent space of S2, we let

γ1 =

 0 1

1 0

 , γ2 =

 0 −i

i 0

 , γ3 =

 1 0

0 −1

 . (A.1)

The γµ satisfy {γµ, γν} = δµν , µ, ν = 1, 2 and γ3 is the chirality matrix. We also introduce

the matrix C = −iγ2, which satisfies

Cγm = −γTmC, (A.2)

where m = 1, 2, 3, and P± = 1
2γ3(1 ∓ γ3). P± projects onto subspaces of negative and

positive chirality respectively. Anti-commuting spinors can be combined in the following

rotationally invariant way:

ελ := εTCλ = εαCαβλ
β = λε. (A.3)

– 39 –



We make the following definition:

εγmλ = ε(γmλ) = εTCγmλ. (A.4)

It can be verified that

εγmλ = −λγmε (A.5)

for anti-commuting spinors as a consequence of equation A.2. Finally, we mention the Fierz

identity, which is useful in verifying the invariance of the GLSM under SUSY transforma-

tions:

(ελ1)λ2 = −1

2

(
(ελ2)λ1 + (εγµλ2)γµλ1 + (εγ3λ2)γ3λ1

)
(A.6)

A.2 Conformal Killing Spinors on S2

We follow the conventions of [9] with our Killing spinors. Explicitly, the space of all ε

satisfying equation 3.7 is given by:

ε = C1e
−iφ

2

 sin θ/2

−i cos θ/2

+ C2e
iφ

2

 cos θ/2

i sin θ/2

 , (A.7)

where θ, φ are the usual polar coordinates on S2 and C1,2 are arbitrary anti-commuting

complex parameters.

B Two-dimensional N = (2, 2) superconformal algebra

The N = (2, 2) superconformal algebra can easily be constructed as two copies (one left-

moving and one right-moving) of the N = 2 superconformal algebra. While this choice of

basis for the algebra is easy to construct, it is more natural to use another basis to locate

the massive subalgebras that can be preserved when GLSMs are placed on an S2. This

basis consists of the bosonic generators Jm,Km, R,A and the supersymmetry generators

Qα, Sα, Q̄α, S̄α. Jm are the generators of isometries of the sphere, Km are the generators of

conformal transformations of the sphere, and R and A are the generators of the vectorlike
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and axial R-symmetries respectively. They satisfy the following commutation relations:

{Sα, Qβ} = γmαβJm −
1

2
CαβR [Jm, S

α] = −1

2
γ αβ
m Sβ [R,Sα] = +Sα

{S̄α, Q̄β} = −γmαβJm −
1

2
CαβR [Jm, Q

α] = −1

2
γ αβ
m Qβ [R,Qα] = −Qα

{Qα, Q̄β} = γmαβKm −
i

2
CαβA [Jm, Q̄

α] = −1

2
γ αβ
m Q̄β [R, Q̄α] = +Q̄α

{Sα, S̄β} = γmαβKm +
i

2
CαβA [Jm, S̄

α] = −1

2
γ αβ
m S̄β [R, S̄α] = −S̄α

[Jm, Jn] = iεmnpJ
p [Km, S

α] = −1

2
γ αβ
m Q̄β [A, Sα] = iQ̄α

[Km,Kn] = −iεmnpJp [Km, Q
α] = −1

2
γ αβ
m S̄β [A, Qα] = −iS̄α

[Jm,Kn] = iεmnpK
p [Km, Q̄

α] = −1

2
γ αβ
m Sβ [A, Q̄α] = −iSα

[Km, S̄
α] = −1

2
γ αβ
m Qβ [A, S̄α] = iQα .

(B.1)

From these commutation relations, it is easy to see that Jm, R,Qα, Sα form a subalgebra,

which we will denote the SU(2 | 1)A subalgebra, following [10]. Moreover, it can be verified

that Jm,A and the following fermionic generators:

S̃ : =
S + S̄

2
+ i

Q+ Q̄

2
Q̃ := −iS − S̄

2
+
Q− Q̄

2
(B.2)

form another subalgebra with commutation relations

[Jm, Jn] = iεmnpJp [Jm, Q̃] = −1

2
γmQ̃ [Jm, S̃] = −1

2
γmS̃

{S̃α, Q̃β} = γmαβJm −
1

2
CαβA [A, Q̃] = −Q̃ [A, S̃] = S̃.

(B.3)

We will call this the SU(2 | 1)B subalgebra.
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