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Today I will tell as much as I can about the invariants Reshetikhin and Turaev constructed
based on Ed Witten’s seminal physics explorations with quantum Chern-Simons theory.
These will be

• An isotopy invariant of framed links.
• An invariant of 3-manifolds.

In the former case, we will construct a special cobordism-like category in which the framed
links are the cobordisms from the empty set to the empty set. The invariants of the framed
links will arise from a TQFT-like theory we can construct using this category as the domain
of an appropriate functor. These invariants of links can then be used to construct an actual
3-dimensional TQFT via surgery, which will give the 3-manifold invariant. Before I give these
constructions, I want to make a comment about the physical origins of the theory so that
it becomes a little clearer why 1) the invariant is of framed links and 2) why representation
theory plays such an important role in here. Witten first proposed these invariants as the
vacuum expectation values in some quantum gauge theory of the holonomy of particles as
they travel around closed loops. In gauge theory, to each particle is attached an irreducible
representation of the gauge group G; this is why in all we do below, we will attach represen-
tations of some appropriate algebraic object to the connected components of the links. We
will actually find that the objects with the right representation theory are called ribon Hopf
algebras, so each link component will be assigned a representation of a ribbon Hopf algebra.
This explains point 2) above; as for 1), the point is related to the subtle issue of quantizing a
classical theory. The quantum field theory that Witten studied was (as such theories usually
are) the quantization of a classical theory. There is not usually a unique way to quantize a
classical theory; quantization usually requires extra choices. Moreover, not all quantizations
of the classical theory would have produced topologically invariant theories. In Witten’s
work, he found that the quantum theory only assigned a sensible invariant once a framing
of the knot was chosen. This is why we’ll be studying ribbons and not strings (which you
would expect since in this framework we should be thinking of links as trajectories of point
particles).

1. The compact braided monoidal category of colored ribbon graphs

Throughout, A will denote an algebra whose category of representations is sufficiently nice
in a sense that will become clearer as we proceed and that I’ll make precise a bit later.

Definition 1.1. A (k, l)-ribbon graph is an oriented surface S consisting of a disjoint
union of annuli and squares I2 embedded in R2 × [0, 1] such that the bases [0, 1]× {0} and
[0, 1]× {1} meet R2 × [0, 1] on its boundary at the following collection of points:

{[i− 1/4, i+ 1/4]× 0× 0 | i = 1, · · · , k} ∪ {[i− 1/4, i+ 1/4]× 0× 1 | i = 1, · · · , l}.
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The parts of the graph homeomorphic to squares are called the ribbons of the ribbon graph
and the parts homeomorphic to annuli are just called the annuli. The core of a ribbon
or annulus is {1/2} × [0, 1], with or without the identification 0 ∼ 1 made depending as to
whether we are considering an annulus or a ribbon respectively.

A ribbon graph is basically a widened version of a tangle (see figure 1 below). We should
think of a (k, l)-ribbon graph as a cobordism between an object consisting of k line segments
and one consisting of l line segments. Thus, the “in” side is the bottom and the out side is
the top. We will, however, need a few fancy-pancifications of the concept of a ribbon graph
before we will define the appropriate cobordism category. First, we have

Definition 1.2. A ribbon graph is directed if the cores of its ribbons and annuli are
provided with directions. For ribbons, a direction gives an initial and final base of the
ribbon.

In fact for each line segment [i − 1/4, i + 1/4] × 0 × 0 or [i − 1/4, i + 1/4] × 0 × 1, we
assign a sign εi or εi, respectively, where εi is +1 if the corresponding line segment on the
bottom boundary of R2 × [0, 1] is the final base of a ribbon, and −1 otherwise. Similarly,
we let εi be +1 if the corresponding line segment on the top boundary of R2 × [0, 1] is the
initial base of a ribbon and -1 otherwise. In other words, if we view a ribbon graph as a
cobordism from the z = 1 part to the z = 0 part, then the sign εi or εi is +1 if the “in”
or “out” designation on the ribbon base coming from the direction of the ribbon matches
the “in” or “out” designation coming from the global cobordism assignment of domain and
codomain. Figure 1 shows a directed ribbon graph. Next, we have

Figure 1. A directed ribbon graph

Definition 1.3. A ribbon graph is homogeneous if, in a neighborhood of R2 × {0, 1}, the
positively oriented normal to the ribbons points in the −y direction, i.e. each ribbon is
twisted an even number of times.

We will restrict attention to homogeneous ribbon graphs for simplicity, though this won’t
be strictly necessary. The final fancy-pancification we will make will be super important.
Recall that we were interested in decorating the components of a link with representations
of an algebra A. To this end, we introduce:

Definition 1.4. A directed ribbon graph is colored when we assign each of its ribbons and
annuli a representation of A.
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We are now ready to define the cobordism category that we’re interested in:

Definition 1.5. The category HCDR(A) has

• as objects, finite sequences (V1, ε1), (V2, ε2), · · · (Vk, εk) of finite-dimensional represen-
tations of A and
• as morphisms between (V1, ε1), (V2, ε2), · · · (Vk, εk) and (V 1, ε1), (V 2, ε2), · · · (V l, εl) iso-

topy classes of (k, l) homogeneous, colored, directed ribbon graphs such that the col-
orings of the ribbons and the induced signs match the labeling of the bases given by
the objects, i.e. the ribbon that has a base at [i − 1/4, i + 1/4] × 0 × 1 should be
colored by V i and the base should be the final or initial base of the ribbon according
to whether εi is -1 or +1, respectively. Isotopies are required to preserve coloring,
orientation, direction, and the bases of the ribbons pointwise.

This will be our domain category; the Reshetikhin-Turaev theory will be a functor from
HCDR(A) to RepA. However, we need to ensure that the category RepA has many of the
nice properties of HCDR(A), so we turn to the examination of these properties and the
requirements on A so that Rep(A) satisfies these properties.

2. HCDR(A) as a compact braided monoidal category

The first thing that we should notice about HCDR(A) is that it’s a monoidal category:
the product is given on objects by concatenation of sequences and on morphisms by placing
ribbon graphs side by side with no linking or interaction. The corresponding monoidal
structure we usually take on Vect is tensor product, so we will want to be able to take the
tensor product of representations of A.

Next, note that for any pair η, θ of objects in HCDR(A), we have the following morphism
θ ⊗ η → η ⊗ θ: Thus, HCDR(A) has the structure of a braided monoidal category.

Figure 2. The Braiding in HCDR(A)

Finally, note that (V1, ε1), (V2, ε2), · · · (Vk, εk) has a dual given by (V1,−ε1), (V2,−ε2), · · · (Vk,−εk),
with unit and counit given by the following diagrams:

These clearly satisfy the zig-zag identity just as they do in our bordism category. The
word for a category in which there are duals satisfying zig-zag is compact category. Thus,
HCDR(A) is a compact, braided monoidal category. We therefore want Rep(A) to be a
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Figure 3. The Compact Categorical Structure Maps in HCDR(A)
.

compact braided monoidal category. We proceed to examine the conditions on A that
guarantee this to be the case.

3. Ribbon Hopf Algebras

We will proceed by introducing a succession of more involved structures on an algebra
that will guarantee that the category RepA has a monoidal product, duals, and a braiding.
We will start with the monoidal product. Recall that an algebra is a (C) vector space A
together with maps

µ : A⊗ A→ A

η : C→ A

called multiplication and unit, respectively. These maps satisfy associativity and unit re-
lations that can easily be drawn as commutative diagrams. If A is an algebra and ρV , ρW
are representations of A on V and W respectively, there is no canonical way to put the
structure of A representation on V ⊗W . The issue is that the naive thing to do, to take
ρV⊗W (a)(v ⊗ w) = ρV (a)v ⊗ ρW (a)w, is not linear in A and actually gives a representation
of A ⊗ A. So, if we have an algebra map A × A ⊗ A (where A ⊗ A is given the natural
algebra structure), we will be able to form tensor products in RepA. Moreover, to have a
monoidal unit, we will need a representation of A on C, which should be given by a map
A → C. Notice that what we need is maps going in the opposite direction as µ and η. We
are therefore motivated to make the following definition:

Definition 3.1. An algebra A is a bialgebra if in addition to its maps µ and η, it posseses
algebra maps

∆ : A→ A⊗ A
ε : A→ C,

such that ∆ and ε satisfy coassociativity and counit relations.

Theorem 3.1. If A is a bialgebra, then RepA is a monoidal category with monoidal product
given by tensor products of vector spaces and unit given by C. These vector spaces are given
the structure of A representations with the following maps:

ρV⊗W (a) = ρV ⊗ ρW (∆(a))

ρC(a)(z) = ε(a)z
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Next, we add the structure of duals to the mix. Notice that if A is an algebra and (V, ρV )
is a representation, then the naive way to put the structure of A-representation on V ∨,
namely that ρV ∨(a) = ρV (a)∨ doesn’t work because taking duals is contravariant. This issue
doesn’t come up in groups where inversion gives a map G → G that reverses the order of
products, so perhaps we should be looking for a similar picture in the world of bialgebras.
If A is a bialgebra, we can put the structure of algebra on HomC(A,A) as follows. Given
f, g ∈ HomC(A,A), define f ? g as the following map:

A
∆−→ A⊗ A f⊗g−−→ A⊗ A µ−→ A.

With the unit η ◦ ε, this is an associative algebra.

Definition 3.2. A bialgebra A is a Hopf algebra if there exists an inverse S for the identity
map on A for the ? multiplication, i.e. if there exists and S satisfying

S ? idH = idH ? S = η ◦ ε.
Cool fact: an antipode is an anti-algebra map: S(ab) = S(b)S(a). Thus, if A is a Hopf

algebra and (V, ρV ) is a representation of A, then we can define the structure of an A-
representation on V ∨ by

ρV ∨(a) = ρV (S(a))∨.

Aside: A group can be considered a Hopf algebra over F1

Theorem 3.2. For A a Hopf algebra, the category of representations of A is a compact
monoidal category with the structures defined above, along with the usual evaluation and
coevaluation maps for V and its dual.

Finally, we add the braiding. If A is a Hopf algebra and R is an invertible element of
A⊗ A then, letting P : A⊗ A→ A⊗ A be the flip homomorphism, we make the following
definition:

Definition 3.3. The pair (A,R) is a quasitriangular Hopf algebra precisely when

∆′(a) = R∆(a)R−1

(∆⊗ idA)(R) = R12R23

(idA ⊗∆)(R) = R12R12,

where ∆′ = P ◦∆, R12 = R⊗ 1, R12 = (id⊗ P )(R12), R23 = 1⊗R.

The first equation just says that conjugation by R effects the swap homomorphism on
coproducts, while the last two equations guarantee the following theorem:

Theorem 3.3. For A a quasitriangular Hopf algebra, the category of representations of A
is a compact braided monoidal category with the braiding defined by

cV,W = P V,W ◦ (ρV ⊗ ρW )(R)

So quasitriangular Hopf algebras give us the full compact braided monoidal structure that
we should hope for RepA. However, we will need one last technical assumption on A before
we can construct the Reshetikhin-Turaev invariant associated to framed links. If (A,R) is a
QTHA, we write R =

∑
i αi ⊗ βi and we let

u = (µ ◦ P ◦ (id⊗ S))(R) =
∑
i

S(βi)⊗ αi.
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Definition 3.4. A QTHA (A,R), along with a central element v ∈ A is called a Ribbon
Hopf algebra if v2 = uS(u) and v satisfies a number of other equations which we won’t
write out.

Finally, we have found a class of algebras whose representation category will be the
codomain of our TQFT-like functor. In fact, we have the following theorem.

Theorem 3.4. Let (A,R, v) be a ribbon Hopf algebra. Then there exists a unique functor
HCDR(A)→ RepA satifsying

(1) F preserves the monoidal product on both categories.
(2) F takes the object (V, ε) to V if ε = +1 and V ∨ if ε = −1.
(3) F takes the caps pictured below to the maps

(x, y) 7→ x(y) : V ∨ ⊗ V → C
and

(y, x) 7→ x(v−1uy) : V ⊗ V ∨ → C,
respectively.

(4) F takes the X graph pictured below to the map

x⊗ y 7→
∑
i

βiy ⊗ αix = (P ◦ (ρV ⊗ ρW (R)))(x⊗ y).

Figure 4. Caps
.

If L is a framed link in R3, the framing is determined by a normal vector to L. Using this
normal vector to widen L, we get a (0, 0)-ribbon graph. If we choose a labeling of L, F gives
us a well-defined isotopy invariant of links. This is the famed Reshetikhin-Turaev invariant
of framed links.

4. RT invariant of 3-Manifolds

I will make some very brief comments about how to use this theory to give the actual
Reshetikhin-Turaev TQFT, or at least how to get the 3-manifold invariant. It is a theorem
that any closed oriented 3-manifold can be obtained from S3 by cutting out a tubular neigh-
borhood of a link and gluing back in a solid torus with new gluing data. The new gluing
data are specified by a framing of L. Moreover, L can be isotoped into R2 × [0, 1], in which
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Figure 5. Crossings
.

case the theory above gives us a well-defined number associated to the link L with the given
framing. Roughly, this idea is used to construct the 3-manifold invariant.


