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The Conformal Manifold: 1

» A CFT p has no scale. But, introducing a deformation
A [ d9xO(x) of the action can induce a scale-dependence.
» Three behaviors, depending on scaling dimension A of O:
» A > d, O irrelevant. Deformation has same macroscopic
behavior as p.
» A < d, O relevant. Deformation induces RG flow away from p.
» A =d, O marginal. Need to compute loop corrections.
» A deformation by a marginal O can produce another CFT.
Then, \ parametrizes a 1-D family of CFTs and O is called
exactly marginal.

» The assignment of meaning to the deformation by AO(x)
depends on a renormalization scheme. Different
renormalization schemes correspond to reparametrizations of \.
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by a redefinition of r. (% is the free parameter)



The conformal manifold in 2d N = (2, 2) SCFTs
L Introduction and Overview
L The Conformal Manifold

Conformal Manifold: An Example

Example

2D Free Boson with Periodic Boundary Condition

>

>

>

Action: S = %fﬁX@X
Periodicity Condition: X ~ X + 27r.
X" is relevant for all n; 92X92X irrelevant

Easy to see O := 9XX is exactly marginal; can be absorbed
by a redefinition of r. (% is the free parameter)

Free bosons on the torus come in a one-dimensional family
parametrized by r.
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Conformal Manifold: 3

> In general, there can be a set {Ou}ﬂzl of exactly marginal
operators with couplings A\“.

» The M\ can be viewed as coordinates on the n-dimensional
conformal manifold, and the {O,} are a basis for the tangent
space at p.

» Can define a Riemannian metric called the Zamolodchikov
metric:

Buv = (Ou(l)ou(o»

» Theories with supersymmetry tend to have rich spaces of
exactly marginals that preserve SUSY, enough to add more
structure (complex, Kahler).
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Exact Results in Field Theory

» Often, in theories with a fermionic symmetry Q, Q allows for
the computation of exact results in a theory; 1-loop
calculations turn out to be exact.

» Roughly speaking, in localization, the path integral turns out
to be independent of %; we can therefore take the i — 0
(semi-classical) limit. This is why 1-loop calculations turn out
exact.
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2d SCFTs

» 2d N = (2,2): conformal manifold is (special) Kahler and
locally a product S¢ X Sic.

» 2d N = (2,2) CFTs can be coupled to S?, but some SUSY is
lost; two options of SU(2 | 1) subalgebra to preserve.

» Computing the S? partition function while preserving
SU(2 | 1)a or SU(2 | 1)p vyields the Kahler potential for either
Sc or Sie:
Z_é‘z = e_’CfC,ZSB} = e Ne.

» GLSMs can be coupled to S2. The partition function
computation localizes and is an RG-invariant. Thus, we can
compute the Kahler potential of the superconformal manifold

for superconformal NLSMs arising as low-energy limits of
GLSMs.
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Broader Significance

» CFTs are important to study both in string theory and field
theory, as fixed points of RG flow and as well understood
points in theory space.

» The conformal manifold gives an analytic structure on the
space of CFTs that allows us to probe theories near a given
well-understood CFT.

» 2d N = (2,2) SCFTs are interesting because many arise as
string compactifications on Calabi-Yau manifolds.
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A New Formalism for 2d CFTs

» Think of a CFT as a Hilbert space H, plus for every Riemann
surface with n punctures ¥ a state (| € (H*)®"

» The (X| satisfy certain smoothness and sewing conditions, and
they give correlation functions:

(1 dn)x = (X]01) @~ @ [dn) -

» A CFT deformation is a shift in the (| such that the
smoothness and sewing conditions remain satisfied.

» |In the conformal manifold, a choice of infinitesimal
deformation at each point gives a connection on the bundle of
operators over the conformal manifold.
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LOperator Formalism

Connections, Renormalization, and Higher-Order
Corrections: 1

» New formalism allows us to give precise meaning to
renormalization schemes and higher-order corrections within
context of CFT.

» Deformations arise as connections V= 8# + I'M on the
conformal manifold.

» Define the finitely deformed surface states

(X e = exp (M'V ) (X].

new
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Connections, Renormalization, and Higher-Order
Corrections: 2

» Higher-order terms in perturbation theory are just
higher-derivatives of the (¥X|. In particular, the second-order
term is

1
5)\“)\” (0.l +Tul)|P)

» Don't have to worry about colliding disks that arise in
point-splitting. If the coefficients of ', are known, it is
completely straightforward to compute higher-order
contributions in perturbation theory. This will be the case for
the “regularization scheme” we consider below.
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Sketch of proof of Z = e7*: 1

» Define infinitesimal CFT deformation by
V,10) = | [ 0u(x0000).

regulating the integral by continuing in the dimension of O,
and extending by Leibniz rule to the (¥|.

» More explicitly, given a basis {¢;} of operators with scaling
dimension A; define the connection:

i 3—Ar2—A
P MR AiE D
H 0 Ai=04;

with A=2+A; — A and Huji the 3-point function
coefficients.
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identity-identity component of the operator corresponding to
second-order variations (9I + I2).
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» Second-order variation of the partition function is the
identity-identity component of the operator corresponding to
second-order variations (O + I2).
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0,0, log Z = —gu, = —0,0,K = Z=e"

» Important: Z = e~ only up to a Kihler ambiguity in K. The
partition function is a section of a bundle over the conformal
manifold. Ambiguity arises because of finite supergravity
counterterms.
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Sketch of proof of Z = e™*: 2

» Second-order variation of the partition function is the
identity-identity component of the operator corresponding to
second-order variations (O + I2).

» Compute:
0,0, log Z = —gu, = —0,0,K = Z=e"

» Important: Z = e~ only up to a Kihler ambiguity in K. The
partition function is a section of a bundle over the conformal
manifold. Ambiguity arises because of finite supergravity
counterterms.

» The deformation only preserves SUSY if deformation restricted
to half of the O,,. Get either IC¢ or Cyc.
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Theorem

Suppose a theory has a symmetry Q. Correlators of Q-closed
operators ¢; are invariant under shifts by Q-exact terms. In
particular, the correlator of a Q-exact operator with Q-closed
operators is 0.

Proof.

6<fa[¢a> = <{Q, so}-al;g ¢a>

< Q- [] o >—Z<¢-{Q,¢5}~ II 4

a#a! B aFa! B

=
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» Suppose the action splits into S = S., + S’ where
Sex

= {Q7 V}ﬁ {Q7 Sex} =0.
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Sex = {Q7 V}, {Q, Sex} - 0
> Let ¢; be Q-closed and define:

(H bi)

= / [Do]e~t5=5" T] o.
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Localization: the General Theory 2

» Suppose the action splits into S = S., + S’ where

Sex = {Q7 V}7 {Q, Sex} - O
> Let ¢; be Q-closed and define:

<H¢i> Z/[Dq’]e_tsex_slnqbi-

» Taking t derivatives just brings down powers of the Q-exact
Sex, so path integral independent of t.
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Localization: the General Theory 2

» Suppose the action splits into S = Se + S’ where

Sex = {Q7 V}, {Q, Sex} =0.
> Let ¢; be Q-closed and define:

AT 00| = [1b8)e =5 ] o

» Taking t derivatives just brings down powers of the Q-exact
Sex, so path integral independent of t.

» Take t — oco. Path integral localizes to a neighborhood of the
minima of S, i.e. 1-loop calculation is exact. Path integral is
a sum over the minima of Se,, weighted by a 1-loop
determinant factor and by S’.
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L Localization

Two-Sphere GLSMs

» 2d N = (2,2) linear sigma models can be placed on S2,
though the full superconformal algebra is reduced to a
SU(2 | 1) subalgebra; two choices for subalgebra.

» Lagrangian consists of five parts:
L= /-:matter + ﬁgauge + EW + EW + Eg.f.-

» Matter can be chiral or twisted chiral; SU(2 | 1)a contains
vector R-symmetry and SU(2 | 1)g contains axial R-symmetry.
Mirror symmetry halves the number of distinct possibilities.
We're interested in a theory with twisted chiral matter and
SU(2 | 1)a symmetry.
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» Theory contains fermionic symmetry O corresponding to the
sum of a generator of the full algebra of SUSY transformations
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» Theory contains fermionic symmetry O corresponding to the
sum of a generator of the full algebra of SUSY transformations
and a BRST operator.

» The matter, gauge, superpotential, and gauge-fixing actions
are all Q-exact. Thus, just as in BRST case, the partition
function is independent of those couplings; the only
dimensionful coupling is gyp, so partition function is
RG-invariant.
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L Localization

Localization of the GLSM

» Theory contains fermionic symmetry O corresponding to the
sum of a generator of the full algebra of SUSY transformations
and a BRST operator.

» The matter, gauge, superpotential, and gauge-fixing actions
are all Q-exact. Thus, just as in BRST case, the partition
function is independent of those couplings; the only
dimensionful coupling is gyp, so partition function is
RG-invariant.

» The bosonic parts of the action are positive definite, so need
to study zeroes of Sey.
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twisted chiral matter and SU(2 | 1) 4 symmetry.
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twisted chiral matter and SU(2 | 1) 4 symmetry.

» Refinement of argument concerning gauge-fixing in the
localization computation.
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My Contributions

» Independent construction of the two-sphere GLSM with
twisted chiral matter and SU(2 | 1) 4 symmetry.

» Refinement of argument concerning gauge-fixing in the

localization computation.

K

» Reformulation of proof of Z = e~ in the language of

connections on the conformal manifold.
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Summary

» CFTs, especially supersymmetric ones, come to us in
parametrized families. Renormalization schemes can be viewed
as connections on the bundle of operators over the conformal
manifold.
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parametrized families. Renormalization schemes can be viewed
as connections on the bundle of operators over the conformal
manifold.

» In 2d N = (2,2) CFTs, the two-sphere partition function
computes the Kahler potential of the conformal manifold.
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parametrized families. Renormalization schemes can be viewed
as connections on the bundle of operators over the conformal
manifold.

» In 2d N = (2,2) CFTs, the two-sphere partition function
computes the Kahler potential of the conformal manifold.

» Localization enables the exact computation of the partition
function.
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Summary

» CFTs, especially supersymmetric ones, come to us in
parametrized families. Renormalization schemes can be viewed
as connections on the bundle of operators over the conformal
manifold.

» In 2d N = (2,2) CFTs, the two-sphere partition function
computes the Kahler potential of the conformal manifold.

» Localization enables the exact computation of the partition
function.

» Qutstanding Questions
» Convergence of the sums in 2.
» We have ignored possible singular points on the manifold. The

study of these could reveal deeper insights about the structure
of the space of CFTs.
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