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The conformal manifold in 2d N = (2, 2) SCFTs

Introduction and Overview

The Conformal Manifold

The Conformal Manifold: 1

I A CFT p has no scale. But, introducing a deformation
λ
∫
ddxO(x) of the action can induce a scale-dependence.

I Three behaviors, depending on scaling dimension ∆ of O:

I ∆ > d , O irrelevant. Deformation has same macroscopic
behavior as p.

I ∆ < d , O relevant. Deformation induces RG flow away from p.
I ∆ = d , O marginal. Need to compute loop corrections.

I A deformation by a marginal O can produce another CFT.
Then, λ parametrizes a 1-D family of CFTs and O is called
exactly marginal .

I The assignment of meaning to the deformation by λO(x)
depends on a renormalization scheme. Different
renormalization schemes correspond to reparametrizations of λ.
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Example
2D Free Boson with Periodic Boundary Condition

I Action: S = 1
2π

∫
∂X ∂̄X

I Periodicity Condition: X ∼ X + 2πr .
I X n is relevant for all n; ∂2X ∂̄2X irrelevant
I Easy to see O := ∂X ∂̄X is exactly marginal; can be absorbed

by a redefinition of r . (h̄ is the free parameter)
I Free bosons on the torus come in a one-dimensional family

parametrized by r .
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Conformal Manifold: 3

I In general, there can be a set {Oµ}nµ=1 of exactly marginal
operators with couplings λµ.

I The λµ can be viewed as coordinates on the n-dimensional
conformal manifold, and the {Oµ} are a basis for the tangent
space at p.

I Can define a Riemannian metric called the Zamolodchikov
metric:

gµν := 〈Oµ(1)Oν(0)〉

I Theories with supersymmetry tend to have rich spaces of
exactly marginals that preserve SUSY, enough to add more
structure (complex, Kähler).
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Localization: Broad Strokes

Exact Results in Field Theory

I Often, in theories with a fermionic symmetry Q, Q allows for
the computation of exact results in a theory; 1-loop
calculations turn out to be exact.

I Roughly speaking, in localization, the path integral turns out
to be independent of h̄; we can therefore take the h̄→ 0
(semi-classical) limit. This is why 1-loop calculations turn out
exact.
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Overview and Broader Significance

2d SCFTs

I 2d N = (2, 2): conformal manifold is (special) Kähler and
locally a product Sc × Stc .

I 2d N = (2, 2) CFTs can be coupled to S2, but some SUSY is
lost; two options of SU(2 | 1) subalgebra to preserve.

I Computing the S2 partition function while preserving
SU(2 | 1)A or SU(2 | 1)B yields the Kähler potential for either
Sc or Stc :

ZA
S2 = e−Ktc ,ZB

S2 = e−KC .

I GLSMs can be coupled to S2. The partition function
computation localizes and is an RG-invariant. Thus, we can
compute the Kähler potential of the superconformal manifold
for superconformal NLSMs arising as low-energy limits of
GLSMs.



The conformal manifold in 2d N = (2, 2) SCFTs

Introduction and Overview

Overview and Broader Significance

2d SCFTs

I 2d N = (2, 2): conformal manifold is (special) Kähler and
locally a product Sc × Stc .

I 2d N = (2, 2) CFTs can be coupled to S2, but some SUSY is
lost; two options of SU(2 | 1) subalgebra to preserve.

I Computing the S2 partition function while preserving
SU(2 | 1)A or SU(2 | 1)B yields the Kähler potential for either
Sc or Stc :

ZA
S2 = e−Ktc ,ZB

S2 = e−KC .

I GLSMs can be coupled to S2. The partition function
computation localizes and is an RG-invariant. Thus, we can
compute the Kähler potential of the superconformal manifold
for superconformal NLSMs arising as low-energy limits of
GLSMs.



The conformal manifold in 2d N = (2, 2) SCFTs

Introduction and Overview

Overview and Broader Significance

2d SCFTs

I 2d N = (2, 2): conformal manifold is (special) Kähler and
locally a product Sc × Stc .

I 2d N = (2, 2) CFTs can be coupled to S2, but some SUSY is
lost; two options of SU(2 | 1) subalgebra to preserve.

I Computing the S2 partition function while preserving
SU(2 | 1)A or SU(2 | 1)B yields the Kähler potential for either
Sc or Stc :

ZA
S2 = e−Ktc ,ZB

S2 = e−KC .

I GLSMs can be coupled to S2. The partition function
computation localizes and is an RG-invariant. Thus, we can
compute the Kähler potential of the superconformal manifold
for superconformal NLSMs arising as low-energy limits of
GLSMs.



The conformal manifold in 2d N = (2, 2) SCFTs

Introduction and Overview

Overview and Broader Significance

2d SCFTs

I 2d N = (2, 2): conformal manifold is (special) Kähler and
locally a product Sc × Stc .

I 2d N = (2, 2) CFTs can be coupled to S2, but some SUSY is
lost; two options of SU(2 | 1) subalgebra to preserve.

I Computing the S2 partition function while preserving
SU(2 | 1)A or SU(2 | 1)B yields the Kähler potential for either
Sc or Stc :

ZA
S2 = e−Ktc ,ZB

S2 = e−KC .

I GLSMs can be coupled to S2. The partition function
computation localizes and is an RG-invariant. Thus, we can
compute the Kähler potential of the superconformal manifold
for superconformal NLSMs arising as low-energy limits of
GLSMs.



The conformal manifold in 2d N = (2, 2) SCFTs

Introduction and Overview

Overview and Broader Significance

2d SCFTs

I 2d N = (2, 2): conformal manifold is (special) Kähler and
locally a product Sc × Stc .

I 2d N = (2, 2) CFTs can be coupled to S2, but some SUSY is
lost; two options of SU(2 | 1) subalgebra to preserve.

I Computing the S2 partition function while preserving
SU(2 | 1)A or SU(2 | 1)B yields the Kähler potential for either
Sc or Stc :

ZA
S2 = e−Ktc ,ZB

S2 = e−KC .

I GLSMs can be coupled to S2. The partition function
computation localizes and is an RG-invariant. Thus, we can
compute the Kähler potential of the superconformal manifold
for superconformal NLSMs arising as low-energy limits of
GLSMs.



The conformal manifold in 2d N = (2, 2) SCFTs

Introduction and Overview

Overview and Broader Significance

Broader Significance

I CFTs are important to study both in string theory and field
theory, as fixed points of RG flow and as well understood
points in theory space.

I The conformal manifold gives an analytic structure on the
space of CFTs that allows us to probe theories near a given
well-understood CFT.

I 2d N = (2, 2) SCFTs are interesting because many arise as
string compactifications on Calabi-Yau manifolds.
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Operator Formalism

A New Formalism for 2d CFTs

I Think of a CFT as a Hilbert space H, plus for every Riemann
surface with n punctures Σ a state 〈Σ| ∈ (H∗)⊗n

I The 〈Σ| satisfy certain smoothness and sewing conditions, and
they give correlation functions:

〈φ1 · · ·φn〉Σ = 〈Σ| |φ1〉 ⊗ · · · ⊗ |φn〉 .

I A CFT deformation is a shift in the 〈Σ| such that the
smoothness and sewing conditions remain satisfied.

I In the conformal manifold, a choice of infinitesimal
deformation at each point gives a connection on the bundle of
operators over the conformal manifold.
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The conformal manifold in 2d N = (2, 2) SCFTs

Operator Formalism

Connections, Renormalization, and Higher-Order
Corrections: 1

I New formalism allows us to give precise meaning to
renormalization schemes and higher-order corrections within
context of CFT.

I Deformations arise as connections ∇µ := ∂µ + Γµ on the
conformal manifold.

I Define the finitely deformed surface states

〈Σ|new = exp (λµ∇µ) 〈Σ| .
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The conformal manifold in 2d N = (2, 2) SCFTs

Operator Formalism

Connections, Renormalization, and Higher-Order
Corrections: 2

I Higher-order terms in perturbation theory are just
higher-derivatives of the 〈Σ|. In particular, the second-order
term is

1
2
λµλν (∂µΓν + ΓµΓν) |P〉

I Don’t have to worry about colliding disks that arise in
point-splitting. If the coefficients of Γµ are known, it is
completely straightforward to compute higher-order
contributions in perturbation theory. This will be the case for
the “regularization scheme” we consider below.
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Two-sphere partition functions and the Kähler potential

Sketch of proof of Z = e−K: 1

I Define infinitesimal CFT deformation by

∇µ |Φ〉 = |
∫
S2
Oµ(x)Φ(0)〉 ,

regulating the integral by continuing in the dimension of Oµ
and extending by Leibniz rule to the 〈Σ|.

I More explicitly, given a basis {φi} of operators with scaling
dimension ∆i define the connection:

Γµj
i =

{
Hµj

i 23−∆r2−∆

2−∆ ∆i 6= ∆j

0 ∆i = ∆j
,

with ∆ = 2 + ∆j −∆i and Hµj
i the 3-point function

coefficients.
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Sketch of proof of Z = e−K: 2

I Second-order variation of the partition function is the
identity-identity component of the operator corresponding to
second-order variations (∂Γ + Γ2).

I Compute:

∂µ∂ν logZ = −gµν = −∂µ∂νK =⇒ Z = e−K

I Important: Z = e−K only up to a Kähler ambiguity in K. The
partition function is a section of a bundle over the conformal
manifold. Ambiguity arises because of finite supergravity
counterterms.

I The deformation only preserves SUSY if deformation restricted
to half of the Oµ. Get either Kc or Ktc .
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The conformal manifold in 2d N = (2, 2) SCFTs

Localization

Localization: the General Theory 1
Theorem
Suppose a theory has a symmetry Q. Correlators of Q-closed
operators φi are invariant under shifts by Q-exact terms. In
particular, the correlator of a Q-exact operator with Q-closed
operators is 0.

Proof.

δ

〈∏
α

φα

〉
=

〈
{Q, ϕ} ·

∏
α 6=α′

φα

〉

=

〈Q, ϕ · ∏
α 6=α′

φα


〉
−
∑
β

〈ϕ · {Q, φβ} ·
∏

α 6=α′,β
φα〉



The conformal manifold in 2d N = (2, 2) SCFTs

Localization

Localization: the General Theory 2
I Suppose the action splits into S = Sex + S ′ where

Sex = {Q,V }, {Q, Sex} = 0.

I Let φi be Q-closed and define:

〈
∏
i

φi 〉

∣∣∣∣∣
t

=

∫
[DΦ]e−tSex−S

′∏
i

φi .

I Taking t derivatives just brings down powers of the Q-exact
Sex , so path integral independent of t.

I Take t →∞. Path integral localizes to a neighborhood of the
minima of Sex , i.e. 1-loop calculation is exact. Path integral is
a sum over the minima of Sex , weighted by a 1-loop
determinant factor and by S ′.
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Localization

Two-Sphere GLSMs

I 2d N = (2, 2) linear sigma models can be placed on S2,
though the full superconformal algebra is reduced to a
SU(2 | 1) subalgebra; two choices for subalgebra.

I Lagrangian consists of five parts:

L = Lmatter + Lgauge + LW + LW + Lg .f ..

I Matter can be chiral or twisted chiral; SU(2 | 1)A contains
vector R-symmetry and SU(2 | 1)B contains axial R-symmetry.
Mirror symmetry halves the number of distinct possibilities.
We’re interested in a theory with twisted chiral matter and
SU(2 | 1)A symmetry.
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Localization

Localization of the GLSM

I Theory contains fermionic symmetry Q corresponding to the
sum of a generator of the full algebra of SUSY transformations
and a BRST operator.

I The matter, gauge, superpotential, and gauge-fixing actions
are all Q-exact. Thus, just as in BRST case, the partition
function is independent of those couplings; the only
dimensionful coupling is gYM , so partition function is
RG-invariant.

I The bosonic parts of the action are positive definite, so need
to study zeroes of Sex .



The conformal manifold in 2d N = (2, 2) SCFTs

Localization

Localization of the GLSM

I Theory contains fermionic symmetry Q corresponding to the
sum of a generator of the full algebra of SUSY transformations
and a BRST operator.

I The matter, gauge, superpotential, and gauge-fixing actions
are all Q-exact. Thus, just as in BRST case, the partition
function is independent of those couplings; the only
dimensionful coupling is gYM , so partition function is
RG-invariant.

I The bosonic parts of the action are positive definite, so need
to study zeroes of Sex .



The conformal manifold in 2d N = (2, 2) SCFTs

Localization

Localization of the GLSM

I Theory contains fermionic symmetry Q corresponding to the
sum of a generator of the full algebra of SUSY transformations
and a BRST operator.

I The matter, gauge, superpotential, and gauge-fixing actions
are all Q-exact. Thus, just as in BRST case, the partition
function is independent of those couplings; the only
dimensionful coupling is gYM , so partition function is
RG-invariant.

I The bosonic parts of the action are positive definite, so need
to study zeroes of Sex .



The conformal manifold in 2d N = (2, 2) SCFTs

Localization

Localization of the GLSM

I Theory contains fermionic symmetry Q corresponding to the
sum of a generator of the full algebra of SUSY transformations
and a BRST operator.

I The matter, gauge, superpotential, and gauge-fixing actions
are all Q-exact. Thus, just as in BRST case, the partition
function is independent of those couplings; the only
dimensionful coupling is gYM , so partition function is
RG-invariant.

I The bosonic parts of the action are positive definite, so need
to study zeroes of Sex .



The conformal manifold in 2d N = (2, 2) SCFTs

My Contribution and Summary

Outline

Introduction and Overview
The Conformal Manifold
Localization: Broad Strokes
Overview and Broader Significance

Operator Formalism

Two-sphere partition functions and the Kähler potential

Localization

My Contribution and Summary



The conformal manifold in 2d N = (2, 2) SCFTs

My Contribution and Summary

My Contributions

I Independent construction of the two-sphere GLSM with
twisted chiral matter and SU(2 | 1)A symmetry.

I Refinement of argument concerning gauge-fixing in the
localization computation.

I Reformulation of proof of Z = e−K in the language of
connections on the conformal manifold.
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Summary

I CFTs, especially supersymmetric ones, come to us in
parametrized families. Renormalization schemes can be viewed
as connections on the bundle of operators over the conformal
manifold.

I In 2d N = (2, 2) CFTs, the two-sphere partition function
computes the Kähler potential of the conformal manifold.

I Localization enables the exact computation of the partition
function.

I Outstanding Questions
I Convergence of the sums in Γ2.
I We have ignored possible singular points on the manifold. The

study of these could reveal deeper insights about the structure
of the space of CFTs.
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