Name:			
Section:			

1. Find the general solution to the differential equation y' = Ay, where

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

2. Find the solution of the initial value problem $\mathbf{y}' = A\mathbf{y}, \ \mathbf{y}(0) = (1, -1)^T$, where

2. Find the solution of the initial value problem
$$y = Ay$$
, $y(0) = (1, -1)^{x}$, where

$$A = \begin{bmatrix} -1 & 0 \\ -2 & -1 \end{bmatrix}.$$

Note to find

Null $(A+I)^{2}$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

At $A+I = \begin{bmatrix} 0 & 0 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix}$$

$$A+I = \begin{bmatrix} 0 & 0 \\ -3 & 1$$