Worksheet 8: February 14

1 Divisors

- 1. List all divisors of each of the following numbers.
 - (a) 6: 1, 2, 3, 6
 - (b) 13: 1, 13
 - (c) 18: 1, 2, 3, 6, 9, 18
 - (d) 25: 1, 5, 25
 - (e) 81: 1, 3, 9, 81
 - (f) 100: 1, 2, 4, 5, 10, 20, 25, 50, 100
- 2. From the previous question: For each of the following pairs of integers, find their greatest common divisor. Which pairs are *relatively prime*?
 - (a) 13 and 25: 1 (relatively prime)
 - (b) 6 and 81: 3
 - (c) 25 and 100: 25
 - (d) 6 and 25: 1 (relatively prime)
 - (e) 18 and 81: 9

2 The Euclidean algorithm and the Chinese remainder theorem

3. (a) Use the Euclidean algorithm to find the GCD of 270 and 192.

$$270 = 1 \cdot 192 + 78$$

$$192 = 2 \cdot 78 + 36$$

$$78 = 2 \cdot 36 + 6$$

$$36 = 6 \cdot 6 + 0$$

The GCD is 6.

(b) Let d be the GCD you just found. Work through the steps of the algorithm to find integers a and b such that 270a + 192b = d.

78 = 270 - 192 $36 = 192 - 2 \cdot 78 = 192 - 2(270 - 192) = -2 \cdot 270 + 3 \cdot 192$ $6 = 78 - 2 \cdot 36 = (270 - 192) - 2(-2 \cdot 270 + 3 \cdot 192) = 5 \cdot 270 - 7 \cdot 192$ a = 5, b = -7 4. (a) Use the Euclidean algorithm to find the GCD of 13 and 98.

$$98 = 7 \cdot 13 + 7$$

$$13 = 1 \cdot 7 + 6$$

$$7 = 1 \cdot 6 + 1$$

The GCD is 1.

(b) Let d be the GCD you just found. Work through the steps of the algorithm to find integers a and b such that 13a + 98b = d.

$$7 = 98 - 7 \cdot 13$$

$$6 = 13 - 1 \cdot 7 = 13 - (98 - 7 \cdot 13) = -98 + 8 \cdot 13$$

$$1 = 7 - 1 \cdot 6 = (98 - 7 \cdot 13) - (-98 + 8 \cdot 13) = 2 \cdot 98 - 15 \cdot 13$$

$$a = 2, b = -15$$

- 5. For each of the following sets of congruences, find all integers x such that every congruence holds.
 - (a) $\begin{cases} x \equiv 2 \mod 5 \\ x \equiv 3 \mod 7 \end{cases}$ Solution: $x \equiv 17 \mod 35$, so x = 17 + 35k for any $k \in \mathbb{Z}$ (b) $\begin{cases} x \equiv 1 \mod 2 \\ x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \end{cases}$

Solution: First reduce to $x \equiv 5 \mod 6$ $x \equiv 3 \mod 5$, then combine to get $x \equiv 23 \mod 30$, so x = 23 + 30k for any $k \in \mathbb{Z}$.

(c)
$$\begin{cases} x \equiv 8 \mod 13 \\ x \equiv 76 \mod 98 \end{cases}$$

Solution: We know from problem 4 that $2 \cdot 98 - 15 \cdot 13 = 1$, so $2 \cdot 98 \equiv 1 \mod 13$ and $-15 \cdot 13 \equiv 1 \mod 98$. Let $n = 8 \cdot (2 \cdot 98) + 76 \cdot (-15 \cdot 13)$. Then $x = n + (13 \cdot 98)k$ for any $k \in \mathbb{Z}$.

(d)
$$\begin{cases} x \equiv 1 \mod 6\\ x \equiv 2 \mod 10 \end{cases}$$

Solution: The first equivalence implies $x \equiv 1 \mod 2$, but the second implies $x \equiv 0 \mod 2$. No such x exists.