Worksheet 7: February 12 (Solutions)

1 Divisibility and Modularity

- 1. For each of the following numbers n, calculate $n \mod 15$. Which of these numbers are divisible by 15? Which of them are congruent to each other mod 15?
 - (a) 0 is divisible by 15
 - (b) $3 \equiv 3 \mod 15$
 - (c) 15 is divisible by 15
 - (d) -450 is divisible by 15
 - (e) $1000 \equiv 10 \mod 15$
 - (f) $-1000 \equiv 5 \mod 15$
 - (g) 30165 is divisible by 15
 - (h) $30168 \equiv 3 \mod 15$
 - 0, 15, -450, and 30165 are equivalent mod 15. 3 and 30168 are equivalent mod 15.
- 2. Calculate the following:
 - (a) $(10^6 37^8 + 561^4 77852^{36}) \mod 2 \equiv (0^6 1^8 + 1^4 0^{36}) \mod 2 \equiv 0 \mod 2$
 - (b) $20^5 \mod 21 \equiv (-1)^5 \mod 21 \equiv (-1) \mod 21 \equiv 20 \mod 21$
 - (c) $(9999 \times 15 1234) \mod 10 \equiv (9 \times 5 4) \mod 10 \equiv 1 \mod 10$
- 3. Suppose a, b, c are integers such that $a \equiv b \mod 7$. Prove or disprove the following:
 - (a) $a^c \equiv b^c \mod 7$ True by induction
 - (b) $c^a \equiv c^b \mod 7$ False. $2^0 \equiv 1 \mod 7$ but $2^7 = 128 \equiv 2 \mod 7$
 - (c) $(a \mod c) \equiv (b \mod c) \mod 7$ False. $(0 \mod 6) \mod 7 \equiv 0 \mod 7$ but $(7 \mod 6) \mod 7 \equiv 1 \mod 7$
- 4. Convert the following base-10 integers to binary.
 - (a) $56 = 111000_2$
 - (b) $184 = 10111000_2$
 - (c) $255 = 111111111_2$
 - (d) $4532 = 1000110110100_2$