Worksheet 7: February 12

1 Divisibility and Modularity

- 1. For each of the following numbers n, calculate $n \mod 15$. Which of these numbers are divisible by 15? Which of them are congruent to each other mod 15?
 - (a) 0
 - (b) 3
 - (c) 15
 - (d) -450
 - (e) 1000
 - (f) -1000
 - (g) 30165
 - (h) 30168

2. Calculate the following:

- (a) $(10^6 37^8 + 561^4 77852^{36}) \mod 2$
- (b) $20^5 \mod 21$
- (c) $(9999 \times 15 1234) \mod 10$
- 3. Suppose a, b, c are integers such that $a \equiv b \mod 7$. Prove or disprove the following:
 - (a) $a^c \equiv b^c \mod 7$
 - (b) $c^a \equiv c^b \mod 7$
 - (c) $(a \mod c) \equiv (b \mod c) \mod 7$
- 4. Convert the following base-10 integers to binary.
 - (a) 56
 - (b) 184
 - (c) 255
 - (d) 4532