Worksheet 5: February 5

1 Sets, part 2

- 1. Determine the truth value of the following statements. Give a brief proof for each.
 - (a) $\forall A : A \cap \overline{A} = \emptyset$
 - (b) $\forall A : A \cup \overline{A} = U$
 - (c) $\forall A \forall B : A \setminus B = A \cap \overline{B}$
 - (d) $\forall A \forall B : (A \setminus B) \cup (A \setminus \overline{B}) = A$
 - (e) $\forall A \forall B : (A \setminus B) \cup (B \setminus A) \cup (A \cap B) = A \cup B$
- 2. What is the power set of $A = \{2, 3, 5\}$?

2 Functions

- 3. Determine which of the following functions are *injective* (one-to-one), *surjective* (onto), or *bijective*.
 - (a) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3$
 - (b) $f : \mathbb{Z} \to \mathbb{Z}, f(x) = x^3$
 - (c) $f: \{0, 1\} \to \mathbb{Z}, f(x) = 5$
 - (d) $f : \mathbb{Z} \to \{0, 1, 2, 3\}, f(x) = (\text{the remainder of } x \text{ divided by } 4)$
 - (e) $f : \mathbb{R} \times \mathbb{R} \to \mathbb{C}, f(x, y) = x + iy$
- 4. Let $f : A \to B$ and $g : B \to C$. What can you say about the injectivity and surjectivity of $g \circ f$, given that...
 - (a) $\dots f$ is injective and g is injective?
 - (b) $\dots f$ is injective and g is surjective?
 - (c) $\dots f$ is surjective and g is injective?
 - (d) $\dots f$ is surjective and g is surjective?
 - (e) $\dots f$ is bijective and g is injective?
 - (f) $\dots f$ is surjective and g is bijective?
 - (g) $\dots f$ is bijective and g is bijective?