
Worksheet 4: January 31 (Solutions)

1 Arguments and Proofs, part 2

1. Given any n real numbers a1, a2, . . . , an, prove that at least one of them is greater
than or equal to the average of these numbers.
Solution: Assume the opposite: for all k, ak < a1+···+an

n
. Sum over all k to get

a1 + · · ·+ an < a1+···+an
n

+ · · ·+ a1+···+an
n

= na1+···+an
n

= a1 + · · ·+ an.

2. Use the previous exercise to show that if the first 10 positive integers are placed
around a circle, in any order, there exist three numbers that are adjacent on the
circle and sum to at least 17.
Solution: Let r1, r2, . . . , r10 be an ordering of the first 10 positive integers. Then the
orderings of the three consecutive integers are a1 = r1 + r2 + r3, a2 = r2 + r3 + r4,
a3 = r3 + r4 + r5, . . ., a8 = r8 + r9 + r10, a9 = r9 + r10 + r1, and a10 = r10 + r1 + r2.
Each of the first ten positive integers is represented exactly three times in the ak’s,
so the sum of the ak’s is 3(1 + 2 + · · · + 10) = 3 · 55 = 165. The average of the ak’s
is 16.5, so there must be some ak that is at least 16.5; the smallest integer that is at
least 16.5 is 17.

3. Use a proof by contradiction to show that there is no rational number r for which
r3 + r + 1 = 0. [Hint: Assume that r = a/b is a root, where a and b are integers and
a/b is in lowest terms. Obtain an equation involving integers by multiplying by b3.
Then look at whether a and b are each odd or even.]
Solution: From the assumption, we have a3

b3
+ a

b
+ 1 = 0, and so a3 + ab2 + b3 = 0.

The left-hand side is only even when both a and b are even, and so a
b
is not in lowest

terms.

4. Prove the triangle inequality, which states that if x and y are real numbers, then
|x|+ |y| ≥ |x+ y| (where | · | represents absolute value).
Solution: Proof by cases. Either |x + y| = x + y, or |x + y| = −x − y, and either
case is ≤ |x|+ |y|.

5. Let A = 651000−82001+3177, let B = 791212−92399+22001, and let C = 25449−58192+
71777. Show that at least one of AB, AC, and BC is nonnegative.
Solution: Among any three numbers, at least one pair must multiply to a nonneg-
ative number.

6. (Challenge) Prove that between every two rational numbers there is an irrational
number.
Solution: For any two distinct rational numbers a

b
and c

d
, the irrational number

a
b
+ 1√

2
( c
d
− a

b
) lies between them.
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2 Sets, part 1

7. For each of the following sets A, give an example of a finite subset B ⊊ A and an
infinite set C : A ⊊ C.

• A = {2, 3, 5, 7, 11}, B = {2, 7}, C = {prime numbers}
• A = Z, B = {2, 3, 5, 7, 11}, C = Q
• A = {1}, B = ∅, C = Z
• A = {people in this room}, B = {Jacob}, C = {people in this room} ∪ R
• A = R, B = {2, 3, 5, 7, 11}, C = C
• A = {x ∈ R : |x| < 1}, B = {0}, C = R
• A = {(x, y) ∈ R× R : x < y}, B = {(1, 3), (2, 7)}, C = R× R

8. Determine the truth value of the following statements. Give a proof for each.

• ∀A ∀B : A ∩B ⊆ A ⊆ A ∪B
True. Trivial.

• ∀A ∀B : (A \B) ∪B = A
False. For A = {1} and B = {2}, (A \B) ∪B = {1, 2}.

• ∀ finite nonempty A ⊆ Z,∃x ∈ A : A ⊆ {y ∈ Z : y ≤ x}
True for x = max(A).

• ∀ infinite A ⊆ Z,∃x ∈ A : {y ∈ Z : y ≤ x} ⊆ A}
False. Z itself is a counterexample.

• ∀x ∈ Z,∀y ∈ Z,∃A ⊆ Z : x ∈ A, y /∈ A
False. No A exists when x = y.

• ∃A ⊆ Z,∀B ⊆ Z : A ∩B = B
True. A = Z

• ∃A ⊆ Z,∀B ⊆ Z : A ∩B = A
True. A = ∅
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