Worksheet 4: January 31 (Solutions)

1 Arguments and Proofs, part 2

- 1. Given any *n* real numbers a_1, a_2, \ldots, a_n , prove that at least one of them is greater than or equal to the average of these numbers. **Solution:** Assume the opposite: for all k, $a_k < \frac{a_1 + \cdots + a_n}{n}$. Sum over all k to get $a_1 + \cdots + a_n < \frac{a_1 + \cdots + a_n}{n} + \cdots + \frac{a_1 + \cdots + a_n}{n} = n \frac{a_1 + \cdots + a_n}{n} = a_1 + \cdots + a_n$.
- 2. Use the previous exercise to show that if the first 10 positive integers are placed around a circle, in any order, there exist three numbers that are adjacent on the circle and sum to at least 17.

Solution: Let r_1, r_2, \ldots, r_{10} be an ordering of the first 10 positive integers. Then the orderings of the three consecutive integers are $a_1 = r_1 + r_2 + r_3$, $a_2 = r_2 + r_3 + r_4$, $a_3 = r_3 + r_4 + r_5, \ldots, a_8 = r_8 + r_9 + r_{10}, a_9 = r_9 + r_{10} + r_1$, and $a_{10} = r_{10} + r_1 + r_2$. Each of the first ten positive integers is represented exactly three times in the a_k 's, so the sum of the a_k 's is $3(1 + 2 + \cdots + 10) = 3 \cdot 55 = 165$. The average of the a_k 's is 16.5, so there must be some a_k that is at least 16.5; the smallest integer that is at least 16.5 is 17.

3. Use a proof by contradiction to show that there is no rational number r for which $r^3 + r + 1 = 0$. [Hint: Assume that r = a/b is a root, where a and b are integers and a/b is in lowest terms. Obtain an equation involving integers by multiplying by b^3 . Then look at whether a and b are each odd or even.]

Solution: From the assumption, we have $\frac{a^3}{b^3} + \frac{a}{b} + 1 = 0$, and so $a^3 + ab^2 + b^3 = 0$. The left-hand side is only even when both a and b are even, and so $\frac{a}{b}$ is not in lowest terms.

- 4. Prove the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where $|\cdot|$ represents absolute value). Solution: Proof by cases. Either |x + y| = x + y, or |x + y| = -x - y, and either case is $\le |x| + |y|$.
- 5. Let $A = 65^{1000} 8^{2001} + 3^{177}$, let $B = 79^{1212} 9^{2399} + 2^{2001}$, and let $C = 25^{449} 5^{8192} + 7^{1777}$. Show that at least one of AB, AC, and BC is nonnegative. Solution: Among *any* three numbers, at least one pair must multiply to a nonnegative number.
- 6. (Challenge) Prove that between every two rational numbers there is an irrational number.
 Solution: For any two distinct rational numbers ^a/_b and ^c/_d, the irrational number ^a/_b + ¹/_{√2}(^c/_d ^a/_b) lies between them.

2 Sets, part 1

- 7. For each of the following sets A, give an example of a finite subset $B \subsetneq A$ and an infinite set $C : A \subsetneq C$.
 - $A = \{2, 3, 5, 7, 11\}, B = \{2, 7\}, C = \{\text{prime numbers}\}\$
 - $A = \mathbb{Z}, B = \{2, 3, 5, 7, 11\}, C = \mathbb{Q}$
 - $A = \{1\}, B = \emptyset, C = \mathbb{Z}$
 - $A = \{\text{people in this room}\}, B = \{\text{Jacob}\}, C = \{\text{people in this room}\} \cup \mathbb{R}$
 - $A = \mathbb{R}, B = \{2, 3, 5, 7, 11\}, C = \mathbb{C}$
 - $A = \{x \in \mathbb{R} : |x| < 1\}, B = \{0\}, C = \mathbb{R}$
 - $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x < y\}, B = \{(1, 3), (2, 7)\}, C = \mathbb{R} \times \mathbb{R}$
- 8. Determine the truth value of the following statements. Give a proof for each.
 - $\forall A \forall B : A \cap B \subseteq A \subseteq A \cup B$ True. Trivial.
 - $\forall A \forall B : (A \setminus B) \cup B = A$ False. For $A = \{1\}$ and $B = \{2\}, (A \setminus B) \cup B = \{1, 2\}.$
 - \forall finite nonempty $A \subseteq \mathbb{Z}, \exists x \in A : A \subseteq \{y \in \mathbb{Z} : y \leq x\}$ True for $x = \max(A)$.
 - \forall infinite $A \subseteq \mathbb{Z}, \exists x \in A : \{y \in \mathbb{Z} : y \leq x\} \subseteq A\}$ False. \mathbb{Z} itself is a counterexample.
 - $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \exists A \subseteq \mathbb{Z} : x \in A, y \notin A$ False. No A exists when x = y.
 - $\exists A \subseteq \mathbb{Z}, \forall B \subseteq \mathbb{Z} : A \cap B = B$ True. $A = \mathbb{Z}$
 - $\exists A \subseteq \mathbb{Z}, \forall B \subseteq \mathbb{Z} : A \cap B = A$ True. $A = \emptyset$