Worksheet 23: April 22

Principles to Remember

- A partial ordering R on a set S is a relation that is reflexive, antisymmetric, and transitive. A **poset** is the pairing of a set and a partial ordering, and is denoted by (S, R).
- We usually denote partial orderings by the symbol \preceq . If \preceq is a partial ordering and $(a,b) \in \preceq$, we write $a \preceq b$. Through an abuse of notation, if we also have $a \neq b$, we write $a \prec b$.
- Two elements of a poset (S, \preceq) are comparable $a \preceq b$ or $b \preceq a$. If every element is comparable with every other, we say \preceq is a total relation and call (S, \preceq) a totally ordered set or a chain.
- If S is a partially ordered set, an element $a \in S$ is **minimal** if there is no smaller element in S; that is, if $b \leq a$, then b = a. Similarly, a is **maximal** if there is no larger element in S; that is, if $a \leq b$, then a = b.
- Relations can be represented using directed graphs: draw a vertex for each element, and for all elements (a, b) of the relation, draw an edge from a's vertex to b's vertex.
- The Hasse diagram for a finite poset is constructed as follows: Start with the directed graph for the relation. Erase all edges from each vertex to itself. Erase all edges which must be in the relation because of transitivity; that is, if there exists z such that $x \prec z$ and $z \prec y$, erase the edge (x, y). Finally, arrange the diagram so that x is drawn below y whenever $x \prec y$, and remove the arrowheads from the edges.

Exercises

- 1. Which of these relations on $\{1, 2, 3, 4\}$ are partial orderings? Determine the properties of a partial ordering that the others lack.
 - (a) $\{(1,1), (2,2), (3,3), (4,4)\}$
 - (b) $\{(1,1), (2,2), (3,1), (3,3), (3,4), (4,3), (4,4)\}$
 - (c) $\{(1,1), (2,2), (2,3), (3,3), (4,4)\}$
 - (d) $\{(1,1), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$
 - (e) $\{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4)\}.$

- 2. Is (S, R) a poset if S is the set of all people in the world and $(a, b) \in R$, where a and b are people, if
 - (a) a is taller than b?
 - (b) a is not taller than b?
 - (c) a = b or a is an ancestor of b?
 - (d) a and b have a common friend?
- 3. Which of $\{=, \neq, <, \leq, >, \geq, |, /\}$ are partial orderings on \mathbb{Z} ?
- 4. Prove that every partial ordering on a finite nonempty set has a minimal element.
- 5. Draw the Haase diagrams for the following posets. What are the maximal and minimal elements?
 - (a) $(\{0, 1, 2, 3, 4, 5\}, \geq)$
 - (b) $(\{1, 2, 3, 4, 5, 6\}, |)$
 - (c) $(\{1, 2, 3, 6, 12, 24, 36, 48\}, |)$
 - (d) $(\mathcal{P}(\{a, b, c\}), \subseteq)$