
Worksheet 20: April 10 (Solutions)

Principles to Remember

• Inclusion-Exclusion Principle: When given a finite union of finite sets, this is
how we find its size.

◦ |A ∪B| = |A|+ |B| − |A ∩B|
◦ |A ∪B ∪ C| = (|A|+ |B|+ |C|)− (|A ∩B|+ |A ∩ C|+ |B ∩ C|) + |A ∩B ∩ C|
◦ |A∪B∪C∪D| = (|A|+|B|+|C|+|D|)−(|A∩B|+|A∩C|+|A∩D|+|B∩C|+|B∩
D|+|C∩D|)+(|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|)−|A∩B∩C∩D|

◦ |A1 ∪A2 ∪ · · · ∪An| =
∑

i |Ai| −
∑

i<j |Ai ∩Aj|+
∑

i<j<k |Ai ∩Aj ∩Ak| − · · ·+
(−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|

• Simple recurrence relations: Let α =
1 +

√
5

2
and let β =

1−
√
5

2
=

1

α
. If {an}

is a sequence, then an+2 = an+1+an if and only if there exist some c, d ∈ R such that
an = cαn + dβn.

Exercises

1. Draw Venn diagrams to illustrate the Inclusion-Exclusion Principle for unions of two
and three sets.
Solution: Behold the following crude diagram, made in PowerPoint because I don’t
actually know how to use image editing software.
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2. Prove the Inclusion-Exclusion Principle. (Hint: Consider how many times an element
belonging to exactly r of the Ai’s is counted in each sum.)
Solution: Consider some x which belongs to exactly r of the Ai’s. Then x is
counted

(
r
1

)
times in

∑
i |Ai|, counted

(
r
2

)
times in

∑
i<j |Ai ∩ Aj|, counted

(
r
3

)
times

in
∑

i<j<k |Ai ∩ Aj ∩ Ak|, and so forth. The net number of times x is counted in the
inclusion-exclusion formula is therefore(

r

1

)
−

(
r

2

)
+

(
r

3

)
− · · ·+ (−1)r−1

(
r

r

)
= 1−

((
r

0

)
−

(
r

1

)
+

(
r

2

)
− · · ·+ (−1)r

(
r

r

))
= 1−

((
r

0

)
1r(−1)0 +

(
r

1

)
1r−1(−1)1 +

(
r

2

)
1r−2(−1)2 + · · ·+

(
r

r

)
10(−1)r

)
= 1− (1− 1)r = 1

by the Binomial Theorem. Since this holds true for any r, every element of |A1 ∩
A2 ∩ · · · ∩ An| is counted exactly once by inclusion-exclusion.

3. A derangement is a permutation of a set which leaves no element in its original posi-
tion. Using the inclusion-exclusion principle, prove that the number of derangements
of a set with n elements is

Dn = n! (1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
)

Solution: Let Ai be the set of permutations of [n] which leave i fixed. Derangements
are permutations which leave no element fixed; thus, we’re looking for the cardinality
of the set A1 ∪ · · · ∪ An, which is n! − |A1 ∪ · · · ∪ An|. We have |Ai| = (n − 1)!,
|Ai ∩ Aj| = (n − 2)!, |Ai ∩ Aj ∩ Ak| = (n − 3)!, and so forth, because if we fix the
mappings of r elements then there are (n− r)! ways to arrange the other elements in
the permutation. Therefore, the Inclusion-Exclusion Principle gives us

|A1 ∪ · · · ∪ An| =
(
n

1

)
(n− 1)!−

(
n

2

)
(n− 2)! +

(
n

3

)
(n− 3)!− · · ·+ (−1)n−1(0)!

=
n!

1! (n− 1)!
(n− 1)!− n!

2! (n− 2)!
(n− 2)! +

n!

3! (n− 3)!
(n− 3)!− · · ·+ (−1)n−1 n!

n! 0!
0!

= n!

(
1

1!
− 1

2!
+

1

3!
− · · ·+ (−1)n−1 1

n!

)
The formula for Dn follows.
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4. Challenge: Prove that if m ≤ n, then the number of onto functions from [m] to [n] is

n−1∑
i=0

(−1)i
(
n

i

)
(n− i)m.

(Hint: Let Ak be the set of functions from [m] to [n] which do not map any element
of [m] to k.)
Solution: Define Ak as the hint suggests. Onto functions are those which map to
every element of [n]; in other words, those which do not belong to any Ak. We’re
thus looking for the cardinality of A1 ∪ · · · ∪ An, which is nm−|A1∪ · · ·∪An|. There
are

(
n
r

)
terms in the r’th summation of the inclusion-exclusion formula, and each of

those terms is (n− r)m. The formula follows after some algebra.

5. Prove that the Fibonacci sequence {Fn} = {1, 1, 2, 3, 5, 8, 13, . . .} has a closed form

defined by Fn =
1√
5
αn − 1√

5
βn.

Solution: The Fibonacci sequence obeys the formula Fn+2 = Fn+1+Fn, which means
it has the closed form Fn = cαn + dβn for some c, d ∈ R, as proved in class. We can
find c and d by plugging in 0 and 1: F0 = 1 = cα0+dβ0 = c+d, and F1 = 1 = cα+dβ.
From there, verifying that c = 1√

5
and d = −

1

√
5 is a matter of algebraic manipulation.

6. The Lucas numbers are defined by {Ln} = {1, 3, 4, 7, 11, 18, . . .}. What is their closed
form?
Solution: Again, we have a sequence with the form Ln+2 = Ln+1 + Ln, so Ln =
cαn+dβn for some c, d. Taking the same approach as in problem 5, we have c+d = 1
and cα + dβ = 3. If you substitute and solve, you’ll find that c = α and d = β, so
Ln = αn+1 + βn+1.
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