Worksheet 20: April 10 (Solutions)

Principles to Remember

e Inclusion-Exclusion Principle: When given a finite union of finite sets, this is
how we find its size.

o [AUB|=|A|+|B|—-|ANB|
o [AUBUC|=(|Al+|B|+|C|)—(JANB|+|ANC|+|BNC|)+|AnBNC|

o [AUBUCUD| = (JA|+|B|+|C|+|D])—(|[ANB|+]ANC|+|AND|+|BNC|+|BN
D|+|CND|)+(JAnNBNC|+|ANBND|+|ANCND|+|BNCND|)—|ANBNCND)|

o [ATUAs U - UA,| =30 [Ail =32, [N A+ 370, i [ANA; N A = +
(=)™ A NAN---NA,
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e Simple recurrence relations: Let o = V5 and let 8 = 2\/_ =—. If {a,}
o

is a sequence, then a, o = a,.1 + a, if and only if there exist some ¢, d € R such that
a, = ca” + dp".

Exercises

1. Draw Venn diagrams to illustrate the Inclusion-Exclusion Principle for unions of two
and three sets.
Solution: Behold the following crude diagram, made in PowerPoint because I don’t
actually know how to use image editing software.

+AI+[B[+[C]

-JANBJ-]ANC]
-|BNC|+|ANBNC|




2. Prove the Inclusion-Exclusion Principle. (Hint: Consider how many times an element
belonging to exactly r of the A;’s is counted in each sum.)
Solution: Consider some x which belongs to exactly r of the A;’s. Then x is
counted (}) times in Y, |4;], counted (}) times in > icj | Ai N Aj], counted (1) times
in » ;i [4i N A; N Agl, and so forth. The net number of times z is counted in the
inclusion-exclusion formula is therefore

(-
(-0 )
(s Qs et ()

=1-(1-1)=1

by the Binomial Theorem. Since this holds true for any r, every element of |4; N
AyN---N A, is counted exactly once by inclusion-exclusion.

3. A derangement is a permutation of a set which leaves no element in its original posi-
tion. Using the inclusion-exclusion principle, prove that the number of derangements
of a set with n elements is

Solution: Let A; be the set of permutations of [n] which leave i fixed. Derangements
are permutations which leave no element fixed; thus, we're looking for the cardinality
of the set Ay U---UA,, which is n! — |4, U---UA,|. We have |4;| = (n — 1)},
A, N Al = (n—=2), |4, NA;NAl = (n—3)!, and so forth, because if we fix the
mappings of r elements then there are (n —r)! ways to arrange the other elements in
the permutation. Therefore, the Inclusion-Exclusion Principle gives us

A U UA,| = (T) (n—1) — <Z) (n—2)1 + (g) (n—3)1 =+ (=1)"}(0)!

The formula for D,, follows.



4. Challenge: Prove that if m < n, then the number of onto functions from [m| to [n] is

n:<—1>f(’§) (n—iy"

7=l

(Hint: Let Ay be the set of functions from [m| to [n] which do not map any element
of [m] to k.)

Solution: Define A; as the hint suggests. Onto functions are those which map to
every element of [n]; in other words, those which do not belong to any Aj. We're
thus looking for the cardinality of A; U---U A, which is n™ —|A; U---UA,|. There
are (:f) terms in the r’th summation of the inclusion-exclusion formula, and each of
those terms is (n — r)™. The formula follows after some algebra.

5. Prove that the Fibonacci sequence {F,} = {1,1,2,3,5,8,13,...} has a closed form

1 1
defined by F,, = —a™ — —=f(".
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Solution: The Fibonacci sequence obeys the formula F),, 5 = F}, 1+ F},, which means
it has the closed form F,, = ca™ + dB" for some c¢,d € R, as proved in class. We can
find ¢ and d by plugging in 0 and 1: Fy = 1 = ca®+dfy = c+d, and F; = 1 = ca+df.
From there, verifying that ¢ = \/Lg and d = %\/5 is a matter of algebraic manipulation.

6. The Lucas numbers are defined by {L, } ={1,3,4,7,11,18,...}. What is their closed
form?
Solution: Again, we have a sequence with the form L,.o = L,,1 + L,, so L, =
ca +dp" for some ¢, d. Taking the same approach as in problem 5, we have c+d = 1
and ca + df = 3. If you substitute and solve, you'll find that ¢ = o and d = f3, so
Ln — an+1 + 51@—&-1‘



