Worksheet 17: April 1 (Solutions)

Principles to Remember

- Remember the following terms relating to discrete probability spaces:
 - experiment: A procedure that yields one of a given set of possible outcomes
 - sample space: The set S of possible outcomes, which (in discrete probability) is finite or countably infinite
 - event: A subset of S
 - **probability distribution:** A function $p: S \to [0,1]$ such that $\sum_{s \in S} p(s) = 1$. We say that p(s) is the **probability** of an outcome $s \in S$. The probability of an event $E \subseteq S$ is defined as $p(E) = \sum_{s \in E} p(s)$.
- Conditional probability: If E and F are two events, the probability of E given F is defined as $p(E | F) = \frac{p(E \cap F)}{p(F)}$.
- Independence: Two events E and F are independent if $p(E \cap F) = p(E)p(F)$.
- Bayes' Theorem: If $p(E) \neq 0$ and $p(F) \neq 0$, then

$$p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})}.$$

Exercises

- 1. Let E and F be events such that p(E) = 0.2 and p(F) = 0.7. Find the largest and smallest possible values of...
 - (a) $p(E \cup F)$ Solution: Minimum 0.2 (if $E \subset F$), maximum 0.9 (if E and F are disjoint)
 - (b) $p(E \cap F)$ Solution: Minimum 0 (if E and F are disjoint), maximum 0.2 (if $E \subset F$)
 - (c) $p(E \mid F)$ Solution: Minimum 0 (if E and F are disjoint), maximum 2/7 (if $E \subset F$)
 - (d) $p(F \mid E)$ Solution: Minimum 0 (if *E* and *F* are disjoint), maximum 1 (if $E \subset F$)
- 2. If E and F are disjoint and independent, what can you say about their probabilities? Solution: At least one of them has probability 0.

- 3. Show that if E and F are events, then $p(E \cap F) \ge p(E) + p(F) 1$. This is known as Bonferroni's inequality. **Solution:** This is an immediate consequence from the inclusion-exclusion principle. We know that $p(E \cup F) = p(E) + p(F) + p(E \cap F)$, and $p(E \cup F) \le 1$ by the definition of a probability distribution; simply equate and subtract.
- 4. Prove Bayes' Theorem.

Solution: By the definition of conditional probability, $p(F | E) = \frac{p(E \cap F)}{p(F)}$. Expand the denominator to obtain $p(F | E) = \frac{p(E \cap F)}{p(E \cap F) + p(E \cap \overline{F})}$. Also by the definition of conditional probability, $p(E \cap F) = p(E | F)p(F)$ and $p(E \cap \overline{F}) = p(E | \overline{F})p(\overline{F})$; substitute these in.

5. Suppose p(E) = 1/3, p(F) = 1/2, and $p(E \mid F) = 2/5$. Find $p(F \mid E)$. Solution: From the definition of conditional probability,

$$p(F \mid E) = \frac{p(E \cap F)}{p(E)} = \frac{p(E \mid F)p(F)}{p(E)} = \frac{2/5 \cdot 1/2}{1/3} = \frac{3}{5}$$

6. I have two boxes. The first box contains three red balls and two blue balls. The second box contains one red ball and five blue balls. If I reach into a box at random and pull out a red ball, what is the probability that I reached into the first box? **Solution:** Let F be the event that I reached into the first box, and let R be the event that I pulled out a red ball. Then $p(F) = \frac{1}{2}$, $p(R \mid F) = \frac{3}{5}$, and $p(R \mid \overline{F}) = \frac{1}{6}$. By Bayes' Theorem,

$$p(F \mid R) = \frac{p(R \mid F)p(F)}{p(R \mid F)p(F) + p(R \mid \overline{F})p(\overline{F})} = \frac{3/5 \cdot 1/2}{3/5 \cdot 1/2 + 1/6 \cdot 1/2} = \frac{18}{23}$$

- 7. Suppose that a test for opium use has a 2% false positive rate and a 5% false negative rate. That is, 2% of people who do not use opium test positive for opium, and 5% of opium users test negative for opium. Furthermore, suppose that 1% of people actually use opium.
 - (a) Find the probability that someone who tests negative for opium use does not use opium.
 Solution: Let T be the event that someone tests positive for opium, and let U be the event that they use opium. Then p(T | U) = 0.05, p(T | U) = 0.02, and

$$p(\overline{U} \mid \overline{T}) = \frac{p(\overline{T} \mid \overline{U})p(\overline{U})}{p(\overline{T} \mid \overline{U})p(\overline{U}) + p(\overline{T} \mid U)p(U)} = \frac{0.98 \cdot 0.99}{0.98 \cdot 0.99 + 0.05 \cdot 0.01} = 0.9995.$$

(b) Find the probability that someone who tests positive for opium use actually uses opium.

Solution: Using the same definitions as in part (a),

p(U) = 0.01. By Bayes' Theorem,

$$p(U \mid T) = \frac{p(T \mid U)p(U)}{p(T \mid U)p(U) + p(T \mid \overline{U})p(\overline{U})} = \frac{0.95 \cdot 0.01}{0.95 \cdot 0.01 + 0.02 \cdot 0.99} = 0.3242.$$