
Worksheet 17: April 1 (Solutions)

Principles to Remember

• Remember the following terms relating to discrete probability spaces:

– experiment: A procedure that yields one of a given set of possible outcomes

– sample space: The set S of possible outcomes, which (in discrete probability)
is finite or countably infinite

– event: A subset of S

– probability distribution: A function p : S → [0, 1] such that
∑

s∈S p(s) = 1.
We say that p(s) is the probability of an outcome s ∈ S. The probability of
an event E ⊆ S is defined as p(E) =

∑
s∈E p(s).

• Conditional probability: If E and F are two events, the probability of E given F

is defined as p(E | F ) =
p(E ∩ F )

p(F )
.

• Independence: Two events E and F are independent if p(E ∩ F ) = p(E)p(F ).

• Bayes’ Theorem: If p(E) ̸= 0 and p(F ) ̸= 0, then

p(F | E) =
p(E | F )p(F )

p(E | F )p(F ) + p(E | F )p(F )
.

Exercises

1. Let E and F be events such that p(E) = 0.2 and p(F ) = 0.7. Find the largest and
smallest possible values of...

(a) p(E ∪ F )
Solution: Minimum 0.2 (if E ⊂ F ), maximum 0.9 (if E and F are disjoint)

(b) p(E ∩ F )
Solution: Minimum 0 (if E and F are disjoint), maximum 0.2 (if E ⊂ F )

(c) p(E | F )
Solution: Minimum 0 (if E and F are disjoint), maximum 2/7 (if E ⊂ F )

(d) p(F | E)
Solution: Minimum 0 (if E and F are disjoint), maximum 1 (if E ⊂ F )

2. If E and F are disjoint and independent, what can you say about their probabilities?
Solution: At least one of them has probability 0.
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3. Show that if E and F are events, then p(E ∩ F ) ≥ p(E) + p(F )− 1. This is known
as Bonferroni’s inequality.
Solution: This is an immediate consequence from the inclusion-exclusion principle.
We know that p(E∪F ) = p(E)+p(F )+p(E∩F ), and p(E∪F ) ≤ 1 by the definition
of a probability distribution; simply equate and subtract.

4. Prove Bayes’ Theorem.

Solution: By the definition of conditional probability, p(F | E) =
p(E ∩ F )

p(F )
. Expand

the denominator to obtain p(F | E) =
p(E ∩ F )

p(E ∩ F ) + p(E ∩ F )
. Also by the definition

of conditional probability, p(E ∩ F ) = p(E | F )p(F ) and p(E ∩ F ) = p(E | F )p(F );
substitute these in.

5. Suppose p(E) = 1/3, p(F ) = 1/2, and p(E | F ) = 2/5. Find p(F | E).
Solution: From the definition of conditional probability,

p(F | E) =
p(E ∩ F )

p(E)
=

p(E | F )p(F )

p(E)
=

2/5 · 1/2
1/3

=
3

5
.

6. I have two boxes. The first box contains three red balls and two blue balls. The
second box contains one red ball and five blue balls. If I reach into a box at random
and pull out a red ball, what is the probability that I reached into the first box?
Solution: Let F be the event that I reached into the first box, and let R be the
event that I pulled out a red ball. Then p(F ) = 1

2
, p(R | F ) = 3

5
, and p(R | F ) = 1

6
.

By Bayes’ Theorem,

p(F | R) =
p(R | F )p(F )

p(R | F )p(F ) + p(R | F )p(F )
=

3/5 · 1/2
3/5 · 1/2 + 1/6 · 1/2

=
18

23
.
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7. Suppose that a test for opium use has a 2% false positive rate and a 5% false negative
rate. That is, 2% of people who do not use opium test positive for opium, and 5%
of opium users test negative for opium. Furthermore, suppose that 1% of people
actually use opium.

(a) Find the probability that someone who tests negative for opium use does not
use opium.
Solution: Let T be the event that someone tests positive for opium, and let U
be the event that they use opium. Then p(T | U) = 0.05, p(T | U) = 0.02, and
p(U) = 0.01. By Bayes’ Theorem,

p(U | T ) = p(T | U)p(U)

p(T | U)p(U) + p(T | U)p(U)
=

0.98 · 0.99
0.98 · 0.99 + 0.05 · 0.01

= 0.9995.

(b) Find the probability that someone who tests positive for opium use actually uses
opium.
Solution: Using the same definitions as in part (a),

p(U | T ) = p(T | U)p(U)

p(T | U)p(U) + p(T | U)p(U)
=

0.95 · 0.01
0.95 · 0.01 + 0.02 · 0.99

= 0.3242.
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