Worksheet 14: March 11 (Solutions)

Principles to Remember

• Binomial Theorem: For any integer $n\geq 0$

$$
(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j
$$

= $\binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$

• **Pascal's Identity:** For any integers n and k such that $0 \le k \le n$,

$$
\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}
$$

1 Binomial Coefficients and Identities

- 1. Expand the following expressions:
	- (a) $(x+y)^5$ Solution: $x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$

(b)
$$
(x^3 + y^2)^4
$$

Solution: $x^{12} + 4x^9y^2 + 6x^6y^4 + 4x^3y^6 + y^8$

2. Find the coefficient of $x^a y^b$ in the expansion of $(5x^2 - 2y^3)^6$, where...

(a) $a = 6, b = 9$ Solution: $\binom{6}{3}$ $_{3}^{6}$ $\left(5^{3}(-2)^{3} = -20000\right)$ (b) $a = 2, b = 15$

Solution:
$$
\binom{6}{5} 5^1 (-2)^5 = -960
$$

(c)
$$
a = 10, b = 6
$$

Solution: 0

3. Prove that
$$
\sum_{j=0}^{n} 3^{j} {n \choose j} = 4^{n}.
$$

Solution: Note that the sum is equal to $\sum_{n=1}^{n}$ $j=0$ $1^{n-j}3^j\binom{n}{j}$ j \setminus , which, by the Binomal Theorem, is equal to $(1+3)^n$.

- 4. Prove Pascal's Identity...
	- (a) using a combinatorial proof.

Solution: Combinatorial proofs require us to count the same thing in two different ways. In this case, consider the number of subsets of size k of a set S , where $|S| = n$. Choose some element $c \in S$; each subset of S either contains c or does not contain c. If a subset of size k contains c, then it has $k-1$ elements which are not c, drawn from the $n-1$ elements in $S \setminus \{c\}$; there are $\binom{n-1}{k-1}$ $_{k-1}^{n-1}$) such subsets. If a subset of size k does not contain c , then all of its k elements are drawn from the $n-1$ elements in $S \setminus \{c\}$; there are $\binom{n-1}{k}$ $\binom{-1}{k}$ such subsets. Thus there are a total of $\binom{n-1}{k-1}$ $\binom{n-1}{k+1} + \binom{n-1}{k}$ $\binom{-1}{k}$ subsets of S that have size k. We also know that there are $\binom{n}{k}$ $\binom{n}{k}$ subsets of S that have size k, so $\binom{n-1}{k-1}$ $\binom{n-1}{k+1} + \binom{n-1}{k}$ $\binom{-1}{k} = \binom{n}{k}$ $\binom{n}{k}$.

(b) using an algebraic proof.

Solution:

$$
\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!}
$$

$$
= k \cdot \frac{(n-1)!}{k!(n-k)!} + (n-k) \cdot \frac{(n-1)!}{k!(n-k)!}
$$

$$
= n \cdot \frac{(n-1)!}{k!(n-k)!}
$$

$$
= \frac{n!}{k!(n-k)!} = \binom{n}{k}
$$

- 5. Prove that for any integers n and k such that $1 \leq k \leq n$, it holds that $k\binom{n}{k}$ ${n \choose k} = n {n-1 \choose k-1}$ $_{k-1}^{n-1}$...
	- (a) using a combinatorial proof. (*Hint*: Given a set of n elements, show that both sides count the number of ways to select a subset of k elements and then choose one element from among that subset.)

Solution: As the hint suggests. If we pick a subset of k elements from a set of n elements, there are $\binom{n}{k}$ $\binom{n}{k}$ ways to do so; and if we subsequently mark one element from among that subset, there are k ways to do so, for a total of $k\binom{n}{k}$ $\binom{n}{k}$ ways. If we mark an element first, there are n ways to do so; and if we pick a subset of k elements which contains the marked element, its remaining $k - 1$ elements will come from the $n-1$ unmarked elements, so there are $\binom{n-1}{k-1}$ $_{k-1}^{n-1}$) ways to do so, for a total of $n\binom{n-1}{k-1}$ $_{k-1}^{n-1}$ ways.

(b) using an algebraic proof. Solution:

$$
k\binom{n}{k} = k \cdot \frac{n!}{k!(n-k)!}
$$

= $nk \cdot \frac{(n-1)!}{k!(n-k)!}$
= $n \cdot \frac{(n-1)!}{(k-1)!(n-k)!} = n\binom{n-1}{k-1}$

- 6. Show that if *n* is a positive integer, then $\binom{2n}{2}$ $\binom{2n}{2} = 2\binom{n}{2}$ $n_2\choose 2} + n^2...$
	- (a) using a combinatorial proof.

Solution: Consider the number of ways to pick a subset of size 2 from an ordered set S of size 2n; there are $\binom{2n}{2}$ $\binom{2n}{2}$ ways to do this. If both elements in the subset are in the first *n* elements of S, there are $\binom{n}{2}$ $\binom{n}{2}$ ways to choose them; if both elements in the subset are in the last *n* elements of *S*, there are $\binom{n}{2}$ $\binom{n}{2}$ ways to choose them; and if one element is in the first n and the other is in the last n, there are n ways to choose each, for a total of n^2 ways. These cases are exhaustive, so $\binom{2n}{2}$ $\binom{2n}{2} = \binom{n}{2}$ $\binom{n}{2} + \binom{n}{2}$ n_2^n + $n^2 = 2\binom{n}{2}$ $n \choose 2 + n^2$.

(b) using an algebraic proof. Solution:

$$
\binom{2n}{2} = \frac{(2n)!}{2!(2n-2)!} = \frac{2n(2n-1)}{2} = n(2n-1) = 2n^2 - n
$$

$$
2\binom{n}{2} + n^2 = 2 \cdot \frac{n!}{2!(n-2)!} + n^2 = 2 \cdot \frac{n(n-1)}{2} + n^2 = 2n^2 - n
$$