Worksheet 14: March 11

Principles to Remember

• Binomial Theorem: For any integer $n \ge 0$

$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$
$$= \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}$$

• Pascal's Identity: For any integers n and k such that $0 \le k \le n$,

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

1 Binomial Coefficients and Identities

- 1. Expand the following expressions:
 - (a) $(x+y)^5$ (b) $(x^3+y^2)^4$
- 2. Find the coefficient of $x^a y^b$ in the expansion of $(5x^2 2y^3)^6$, where...
 - (a) a = 6, b = 9(b) a = 2, b = 15(c) a = 10, b = 6

3. Prove that
$$\sum_{j=0}^{n} 3^{j} \binom{n}{j} = 4^{n}$$
.

- 4. Prove Pascal's Identity...
 - (a) using a combinatorial proof.
 - (b) using an algebraic proof.
- 5. Prove that for any integers n and k such that $1 \le k \le n$, it holds that $k\binom{n}{k} = n\binom{n-1}{k-1}$...
 - (a) using a combinatorial proof. (*Hint:* Given a set of n elements, show that both sides count the number of ways to select a subset of k elements and then choose one element from among that subset.)
 - (b) using an algebraic proof.
- 6. Show that if n is a positive integer, then $\binom{2n}{2} = 2\binom{n}{2} + n^2 \dots$
 - (a) using a combinatorial proof.
 - (b) using an algebraic proof.