
Worksheet 13: March 6 (Solutions)

Principles to Remember

• Pigeonhole Principle: Putting n+1 objects into n boxes always results in one box
with at least two objects in it. More generally, placing k objects into n boxes always
results in one box with at least ⌈k/n⌉ objects in it.

• An r-permutation of a set S is an ordered arrangement of r elements of S. If S has
n elements, its number of r-permutations is n!

(n−r)!
.

• An r-combination of a set S is an unordered arrangement of r elements of S. If S
has n elements, its number of r-combinations is n!

(n−r)!r!
, which we denote as

(
n
r

)
and

pronounce “n choose r.”

1 Pigeonhole Principle

1. Suppose you have 3 spheres and 7 cubes, each labelled with a number between 0 and
9. Show that there are at least two different sphere-cube pairs whose sums are equal.
Is this still true with 6 cubes instead of 7?
Solution: The minimum sum of a sphere-cube pair is 0 + 0 = 0, and the maximum
sum is 9 + 9 = 18, so there are 19 possible sums. Since we have 3× 7 = 21 pairs, at
least two pairs must have the same sum by the pigeonhole principle. The pigeonhole
principle doesn’t tell us anything for the case of 6 cubes, since there are only 18 pairs
in that case. (It’s still true, though, but much harder to prove.)

2. What is the smallest integer n such that any subset of {1, 2, . . . , 9} with n elements
is guaranteed to contain two numbers adding to 10?
Solution: Consider the five “boxes” {1, 9}, {2, 8}, {3, 7}, {4, 6}, and {5}. If we pick
any six numbers from [9], then two of them must fall in the same box, and thus some
to 10. This is a strict lower bound on n, since {1, 2, 3, 4, 5} contains no two elements
that sum to 10. Therefore n = 6.

3. Show that in a group of 6 people, where any two people are either enemies or friends,
there are either three mutual friends or three mutual enemies.
Solution: Select any one person, whom we’ll call A. There are five other people,
so by the pigeonhole principle, either three of them are friends with A, or three
of them are enemies with A. Without loss of generality, assume that A has three
friends, whom we’ll call B, C, and D. If B and C are friends, then A,B,C form
a mutual friends triple; if B and D are friends, then A,B,D form a mutual friends
triple; if C and D are friends, then A,C,D form a mutual friends triple; and if none
of these cases hold, then B, C, and D are all enemies with each other, so B,C,D
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form a mutual enemies triple. Solutions to the generalized “party problem” are called
Ramsey numbers ; 6 is the Ramsey number R(3, 3).

4. Suppose there is a hotel with infinitely many rooms, numbered 1, 2, 3, . . ., and in-
finitely many guests, numbered 0, 1, 2, 3, . . .. Does the pigeonhole principle imply
that some room has at least two guests?
Solution: Nope – the pigeonhole principle only applies to finite sets. Countable sets
can be mapped bijectively to each other, as we have seen in previous units.

2 Permutations and Combinations

5. How many ways are there for three puffins and six penguins to stand in a line such
that...

(a) ...all puffins stand together?
Solution: Treating the puffins as a block and each individual penguin as a block
implies there are 7! ways to arrange the blocks, and there are 3! ways to arrange
the puffins in their block, so the answer is 7! · 3!.

(b) ...all penguins stand together?
Solution: Now we have 4 blocks, one of which contains 6 elements, so the
answer is 4! · 6!.

6. How many permutations of the string ‘ABCDEFG’...

(a) ...contain both ‘ABC’ and ‘DE’ as consecutive substrings?
Solution: The four blocks are ‘ABC’, ‘DE’, ‘F’, and ‘G’. The answer is 4!.

(b) ...have ‘A’ anywhere before ‘B’?
Solution: All permutations either have A before B or have B before A, and
there are equally many permutations of each type, so the answer is 7!

2
.

7. Find a formula for the number of ways to seat n people around a circular table, where
seatings are considered the same if every person has the same two neighbors (without
regard to which side those neighbors are sitting on).
Solution: We’re counting equivalency classes of permutations, where each class has
size 2n because of rotation and reflection. Since each permutation belongs to such a
class, there are n!

2n
= (n−1)!

2
equivalency classes.

8. How many ways are there for a horse race with four horses to finish if ties are possible?
Note that any number of horses may tie in any position.
Solution: We need to consider several cases here.

• If no horses tie, there are 4! = 24 ways to arrange the horses.

• If two horses tie, there are
(
4
2

)
ways to form the pair and 3! ways to arrange the

three blocks, for a total of 36 ways.
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• If three horses tie, there are
(
4
3

)
ways to form the triple and 2! ways to arrange

the two blocks, for a total of 8 ways.

• If two pairs of horses each tie, there are 3 ways to form the pairs and 2 ways to
arrange them, for a total of 6 ways.

• Finally, all four horses tying is 1 additional way the race may go.

The total number of possible outcomes is 24 + 36 + 8 + 6 + 1 = 75.

9. Prove that
n∑

i=r

(
i

r

)
=

(
n+ 1

r + 1

)
for n, r ∈ N and n > r. (This is known as the

hockey-stick identity. Why?)
Solution: You can prove this either combinatorially or via induction on n; I’m going
to do the latter. In the base case n = r, we have

(
r
r

)
=
(
r+1
r+1

)
, which is true because

they’re both equal to 1. For the inductive hypothesis, we assume
∑n−1

i=r

(
i
r

)
=
(

n
r+1

)
for some n > r. In the inductive step, we see that

n∑
i=r

(
i

r

)
=

(
n−1∑
i=r

(
i

r

))
+

(
n

r

)
=

(
n

r + 1

)
+

(
n

r

)
=

(
n+ 1

r + 1

)
.

The last equality is from Pascal’s rule.

This is known as the hockey-stick identity because if you trace out the coefficients it
deals with on Pascal’s triangle, they form a long line that zags for one step at the
end, so it looks a bit like a hockey stick.
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