Worksheet 13: March 6 (Solutions)

Principles to Remember

- Pigeonhole Principle: Putting $n+1$ objects into n boxes always results in one box with at least two objects in it. More generally, placing k objects into n boxes always results in one box with at least $\lceil k/n \rceil$ objects in it.
- An r-permutation of a set S is an *ordered* arrangement of r elements of S. If S has *n* elements, its number of *r*-permutations is $\frac{n!}{(n-r)!}$.
- An r-combination of a set S is an unordered arrangement of r elements of S. If S has *n* elements, its number of *r*-combinations is $\frac{n!}{(n-r)!r!}$, which we denote as $\binom{n}{r}$ $\binom{n}{r}$ and pronounce "n choose r."

1 Pigeonhole Principle

1. Suppose you have 3 spheres and 7 cubes, each labelled with a number between 0 and 9. Show that there are at least two different sphere-cube pairs whose sums are equal. Is this still true with 6 cubes instead of 7?

Solution: The minimum sum of a sphere-cube pair is $0 + 0 = 0$, and the maximum sum is $9 + 9 = 18$, so there are 19 possible sums. Since we have $3 \times 7 = 21$ pairs, at least two pairs must have the same sum by the pigeonhole principle. The pigeonhole principle doesn't tell us anything for the case of 6 cubes, since there are only 18 pairs in that case. (It's still true, though, but much harder to prove.)

- 2. What is the smallest integer n such that any subset of $\{1, 2, \ldots, 9\}$ with n elements is guaranteed to contain two numbers adding to 10? **Solution:** Consider the five "boxes" $\{1, 9\}$, $\{2, 8\}$, $\{3, 7\}$, $\{4, 6\}$, and $\{5\}$. If we pick any six numbers from [9], then two of them must fall in the same box, and thus some to 10. This is a strict lower bound on n, since $\{1, 2, 3, 4, 5\}$ contains no two elements that sum to 10. Therefore $n = 6$.
- 3. Show that in a group of 6 people, where any two people are either enemies or friends, there are either three mutual friends or three mutual enemies. Solution: Select any one person, whom we'll call A. There are five other people,

so by the pigeonhole principle, either three of them are friends with A , or three of them are enemies with A . Without loss of generality, assume that A has three friends, whom we'll call B, C , and D . If B and C are friends, then A, B, C form a mutual friends triple; if B and D are friends, then A, B, D form a mutual friends triple; if C and D are friends, then A, C, D form a mutual friends triple; and if none of these cases hold, then B, C , and D are all enemies with each other, so B, C, D

form a mutual enemies triple. Solutions to the generalized "party problem" are called *Ramsey numbers*; 6 is the Ramsey number $R(3,3)$.

4. Suppose there is a hotel with infinitely many rooms, numbered $1, 2, 3, \ldots$, and infinitely many guests, numbered $0, 1, 2, 3, \ldots$ Does the pigeonhole principle imply that some room has at least two guests?

Solution: Nope – the pigeonhole principle only applies to finite sets. Countable sets can be mapped bijectively to each other, as we have seen in previous units.

2 Permutations and Combinations

- 5. How many ways are there for three puffins and six penguins to stand in a line such that...
	- (a) ...all puffins stand together? Solution: Treating the puffins as a block and each individual penguin as a block implies there are 7! ways to arrange the blocks, and there are 3! ways to arrange the puffins in their block, so the answer is $7! \cdot 3!$.
	- (b) ...all penguins stand together? Solution: Now we have 4 blocks, one of which contains 6 elements, so the answer is $4! \cdot 6!$.
- 6. How many permutations of the string 'ABCDEFG'...
	- (a) ...contain both 'ABC' and 'DE' as consecutive substrings? Solution: The four blocks are 'ABC', 'DE', 'F', and 'G'. The answer is 4!.
	- (b) ...have 'A' anywhere before 'B'? **Solution:** All permutations either have A before B or have B before A, and there are equally many permutations of each type, so the answer is $\frac{7!}{2}$.
- 7. Find a formula for the number of ways to seat n people around a circular table, where seatings are considered the same if every person has the same two neighbors (without regard to which side those neighbors are sitting on).

Solution: We're counting *equivalency classes* of permutations, where each class has size 2n because of rotation and reflection. Since each permutation belongs to such a class, there are $\frac{n!}{2n} = \frac{(n-1)!}{2}$ $\frac{-1)!}{2}$ equivalency classes.

- 8. How many ways are there for a horse race with four horses to finish if ties are possible? Note that any number of horses may tie in any position. Solution: We need to consider several cases here.
	- If no horses tie, there are $4! = 24$ ways to arrange the horses.
	- If two horses tie, there are $\binom{4}{2}$ $_{2}^{4}$) ways to form the pair and 3! ways to arrange the three blocks, for a total of 36 ways.
- If three horses tie, there are $\binom{4}{3}$ $_3^4$) ways to form the triple and 2! ways to arrange the two blocks, for a total of 8 ways.
- If two pairs of horses each tie, there are 3 ways to form the pairs and 2 ways to arrange them, for a total of 6 ways.
- Finally, all four horses tying is 1 additional way the race may go.

The total number of possible outcomes is $24 + 36 + 8 + 6 + 1 = 75$.

9. Prove that $\sum_{n=1}^{\infty}$ $i = r$ $\int i$ r \setminus = $\binom{n+1}{r+1}$ for $n, r \in \mathbb{N}$ and $n > r$. (This is known as the hockey-stick identity. Why?)

Solution: You can prove this either combinatorially or via induction on n ; I'm going to do the latter. In the base case $n = r$, we have $\binom{r}{r}$ $r(r_r^{r+1})$, which is true because they're both equal to 1. For the inductive hypothesis, we assume $\sum_{i=r}^{n-1} {i \choose r}$ $\binom{i}{r} = \binom{n}{r+1}$ for some $n > r$. In the inductive step, we see that

$$
\sum_{i=r}^{n} \binom{i}{r} = \left(\sum_{i=r}^{n-1} \binom{i}{r}\right) + \binom{n}{r} = \binom{n}{r+1} + \binom{n}{r} = \binom{n+1}{r+1}.
$$

The last equality is from Pascal's rule.

This is known as the hockey-stick identity because if you trace out the coefficients it deals with on Pascal's triangle, they form a long line that zags for one step at the end, so it looks a bit like a hockey stick.