
Worksheet 11: February 28

1 More Induction

1. Prove that for any n ∈ Z+, 13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.

Solution: The base case for n = 1 is true because 13 =
12(1 + 1)2

4
. In the inductive

case n ≥ 2, if we assume that 13 + · · ·+ (n− 1)3 =
(n− 1)2n2

4
, we have

13 + · · ·+ n3 = (13 + · · ·+ (n− 1)3) + n3

=
(n− 1)2n2

4
+ n3

= (n2 − 2n+ 1)
n2

4
+ 4n

n2

4

= (n2 + 2n+ 1)
n2

4

=
n2(n+ 1)2

4
.

2. Prove inductively that for any n ∈ Z+ and p ∈ R\{1}, 1+p+p2+· · ·+pn =
pn+1 − 1

p− 1
.

Solution: The base case for n = 1 is true because 1 + p =
p2 − 1

p− 1
. In the inductive

case n ≥ 2, if we assume that 1 + p+ · · ·+ pn−1 =
pn − 1

p− 1
, we have

1 + p+ · · ·+ pn = (1 + p+ · · ·+ pn−1) + pn

=
pn − 1

p− 1
+ pn

=
pn − 1

p− 1
+

pn+1 − pn

p− 1

=
pn+1 − 1

p− 1
.

1



3. Prove that for any n ∈ Z+,
n∑

k=1

k · k! = (n+ 1)!− 1.

Solution: The base case for n = 1 is true because 1 · 1! = (1 + 1)! − 1. In the

inductive case n ≥ 2, if we assume that
n−1∑
k=1

k · k! = n!− 1, we have

n∑
k=1

k · k! =

(
n−1∑
k=1

k · k!

)
+ n · n!

= n!− 1 + n · n!
= (n+ 1) · n!− 1

= (n+ 1)!− 1.

4. Evaluate
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
for some small values of n. What does it seem

like the formula should be? Prove this formula by induction.

Solution: For n = 1, we have
1

2
. For n = 2, we have

1

2
+

1

6
=

2

3
. For n =

3, we have
2

3
+

1

12
=

3

4
. For n = 4, we have

3

4
+

1

20
=

4

5
. It seems like the

formula should be
n

n+ 1
. This formula holds for the base case, and if we assume that

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n
=

n− 1

n
, then

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
=

(
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n

)
+

1

n(n+ 1)

=
n− 1

n
+

1

n(n+ 1)

=
(n− 1)(n+ 1) + 1

n(n+ 1)

=
n2

n(n+ 1)

=
n

n+ 1
.

5. Prove that 3 divides n3 + 2n for any positive integer n.
Solution: The base case for n = 1 is true because 3 divides 13 + 2. In the inductive
case n ≥ 2, if we assume that (n− 1)3 + 2(n− 1) = 3k for some integer k, we have

n3 + 2n = n3 − (n− 1)3 + 2n− 2(n− 1) + (n− 1)3 + 2(n− 1)

= n3 − (n3 − 3n2 + 3n− 1) + 2n− (2n− 2) + 3k

= 3n2 − 3n+ 1 + 2 + 3k

= 3(n2 − n+ 1 + k), which is divisible by 3.
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6. Prove that for n ≥ 30, a postage of n cents can be made using just 4-cent and 11-cent
stamps. (Hint: Use strong induction. What is the base case?)
Solution: The base case is that postages of 30, 31, 32, and 33 cents can be made with
just 4-cent and 11-cent stamps: this is true because 30 = 2 ·11+2 ·4, 31 = 1 ·11+5 ·4,
32 = 8 · 4, and 33 = 3 · 11. In the inductive case n ≥ 34, assume that all postages
between 30 and n− 1 cents can be made with just 4-cent and 11-cent stamps. Then
n− 4 cents can be made in this way, so to get n cents, simply add a 4-cent stamp to
that combination.

7. What’s wrong with the following inductive “proof” that the sum of all positive inte-
gers is finite?

• Let P (n) be the statement “the sum of the first n positive integers is finite.”

• Base case: 1 is finite, so P (1) is true.

• Inductive hypothesis: P (n) is true.

• Inductive step: 1 + · · ·+ (n+ 1) = [1 + · · ·+ n] + (n+ 1). Using P (n), the first
sum is a finite number S. Therefore S + (n+ 1) is finite, so P (n+ 1) is true.

• Therefore the sum of all positive integers is finite.

Solution: The proof is fine until the very last line. It’s true that for any integer n,
the first positive n integers are infinite. However, ∞ is not an integer, so we cannot
use this proof to conclude that the sum of all positive integers – a.k.a., the sum of
the first ∞ integers – is finite.

2 Recursive Definitions

8. Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively by f(0) = 1 and for
n = 0, 1, 2, . . .

(a) f(n+ 1) = f(n) + 2
Solution: 3, 5, 7, 9

(b) f(n+ 1) = 3f(n)
Solution: 3, 9, 27, 81

(c) f(n+ 1) = 2f(n)

Solution: 2, 4, 16, 65536

(d) f(n+ 1) = f(n)2 + f(n) + 1
Solution: 3, 13, 183, 33673

(e) f(n+ 1) = 1− f(n)
Solution: 0, 1, 0, 1
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9. Prove that f 2
1 + f 2

2 + · · ·+ f 2
n = fnfn+1, where fk is the k-th Fibonacci number.

Solution: The base case for n = 1 is true because f 2
1 = f1f2. In the inductive case

n ≥ 2, if we assume that f 2
1 + · · ·+ f 2

n−1 = fn−1fn, then

f 2
1 + · · ·+ f 2

n = (f 2
1 + · · ·+ f 2

n−1) + f 2
n

= fn−1fn + f 2
n

= fn(fn−1 + fn)

= fnfn+1.
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