
Worksheet 10: February 26 (Solutions)

1 A Few More Words on Fermat

1. State and prove Fermat’s Little Theorem (I really want you to be able to do this!)
Note: The print version of this worksheet accidentally asked for a proof of Fermat’s
Last Theorem, which I decidedly do not expect you to be able to prove – Fermat
himself couldn’t, and neither could anyone else for 358 years!
Theorem: If p is prime and a is an integer not divisible by p, then ap−1 ≡ 1 mod p.
Proof: a has a multiplicative inverse modulo p; call it b. Let S = {1, 2, 3, . . . , p− 1}.
Then the function f : S → S defined by f(x) = ax mod p is invertible, because its
inverse is f−1(y) = by mod p. Thus:

{1 mod p, 2 mod p, . . . , (p− 1) mod p} = {1a mod p, 2a mod p, . . . , (p− 1)a mod p}

1× 2× · · · × (p− 1) ≡ 1a× 2a× · · · × (p− 1)a mod p

1× 2× · · · × (p− 1) ≡ ap−1(1× 2× · · · × (p− 1)) mod p

The number on the left is not divisible by p (because p is prime), so it has a modular
inverse. Multiply both sides by this inverse to get 1 ≡ ap−1 mod p.

2. Evaluate the following congruences:

(a) 71462 mod 11
Solution: 71462 ≡ 72 ≡ 49 ≡ 5 mod 11

(b) 19603 mod 7
Solution: 19603 ≡ 193 ≡ 23 ≡ 8 ≡ 1 mod 7

(c) 34567 mod 17
Solution: 0

2 Induction

3. Prove that for any n ∈ Z+, 1 + 2+ · · ·+ n =
n(n+ 1)

2
(the n-th triangular number).

Solution: The base case is 1 =
1(1 + 1)

2
, which holds. If we assume 1 + 2 + · · · +

(n− 1) =
(n− 1)n

2
, then 1 + 2+ · · ·+ n =

(n− 1)n

2
+ n =

n2 − n

2
+

2n

2
=

n2 + n

2
=

n(n+ 1)

2
.
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4. Prove that for any n ∈ Z+, 12 + 22 + · · · + n2 =
n(n+ 1)(2n+ 1)

6
(the n-th square

pyramidal number).

Solution: The base case is 12 =
1(1 + 1)(2 + 1)

6
, which holds. If we assume 12+22+

· · ·+(n− 1)2 =
(n− 1)n(2n− 1)

6
, then 12+22+ · · ·+n2 =

(n− 1)n(2n− 1)

6
+n2 =

2n3 − 3n2 + n

6
+

6n2

6
=

2n3 + 3n2 + n

6
=

n(n+ 1)(2n+ 1)

6
.

5. Prove that for any n ∈ Z+,
1

2
+

1

22
+ · · ·+ 1

2n
= 1− 1

2n

Solution: The base case is
1

2
= 1− 1

21
, which holds. If we assume that

1

2
+

1

22
+ · · ·+

1

2n−1
= 1− 1

2n−1
, then

1

2
+

1

22
+ · · ·+ 1

2n
=

(
1− 1

2n−1

)
+

1

2n
= 1− 2

2n
+

1

2n
= 1− 1

2n
.

6. Consider the following inductive “proof” that all horses are the same color.

Let P (n) be the statement that all groups of n horses are the same color.
Clearly P (1) is true, because if you only have one horse then all the horses
you have are the same color. In the inductive step, suppose that P (n) is
true. Then if you have n+ 1 horses, the first n are all the same color, and
the last n are the same color. The n− 1 horses shared between these two
groups must all be the same color, so the first and last horse must also be
the same color, and therefore all n+1 horses are the same color. Therefore
P (n) → P (n + 1) is true for all n, and since we have the base case P (1),
we have that P (n) is true for all n.

Why is this wrong?
Solution: The inductive step P (n) → P (n + 1) doesn’t work for n = 1, because
when you only have two horses, there aren’t any horses shared between the first one
and the last one (n− 1 = 0).
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