Worksheet 10: February 26 (Solutions)

1 A Few More Words on Fermat

1. State and prove Fermat's Little Theorem (I really want you to be able to do this!) Note: The print version of this worksheet accidentally asked for a proof of Fermat's Last Theorem, which I decidedly do not expect you to be able to prove – Fermat himself couldn't, and neither could anyone else for 358 years!

Theorem: If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \mod p$. **Proof:** a has a multiplicative inverse modulo p; call it b. Let $S = \{1, 2, 3, \ldots, p-1\}$. Then the function $f : S \to S$ defined by $f(x) = ax \mod p$ is invertible, because its inverse is $f^{-1}(y) = by \mod p$. Thus:

{1 mod $p, 2 \mod p, ..., (p-1) \mod p$ } = {1a mod $p, 2a \mod p, ..., (p-1)a \mod p$ }

$$
1 \times 2 \times \cdots \times (p-1) \equiv 1a \times 2a \times \cdots \times (p-1)a \mod p
$$

$$
1 \times 2 \times \cdots \times (p-1) \equiv a^{p-1}(1 \times 2 \times \cdots \times (p-1)) \mod p
$$

The number on the left is not divisible by p (because p is prime), so it has a modular inverse. Multiply both sides by this inverse to get $1 \equiv a^{p-1} \mod p$.

- 2. Evaluate the following congruences:
	- (a) 7 ¹⁴⁶² mod 11 Solution: $7^{1462} \equiv 7^2 \equiv 49 \equiv 5 \mod 11$
	- (b) 19⁶⁰³ mod 7 Solution: $19^{603} \equiv 19^3 \equiv 2^3 \equiv 8 \equiv 1 \mod 7$
	- (c) $34^{567} \mod 17$ Solution: 0

2 Induction

3. Prove that for any $n \in \mathbb{Z}^+, 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ 2 (the *n*-th *triangular number*). **Solution:** The base case is $1 = \frac{1(1+1)}{2}$ 2 , which holds. If we assume $1 + 2 + \cdots$ $(n-1) = \frac{(n-1)n}{2}$ 2 , then $1 + 2 + \cdots + n =$ $(n-1)n$ 2 $+n =$ $n^2 - n$ 2 $^{+}$ $2n$ 2 = $n^2 + n$ 2 = $n(n+1)$ 2 .

- 4. Prove that for any $n \in \mathbb{Z}^+, 1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{n}$ 6 (the n-th square pyramidal number). **Solution:** The base case is $1^2 = \frac{1(1+1)(2+1)}{6}$ 6 , which holds. If we assume 1^2+2^2+ $\cdots + (n-1)^2 = \frac{(n-1)n(2n-1)}{n}$ 6 , then $1^2 + 2^2 + \cdots + n^2 = \frac{(n-1)n(2n-1)}{6}$ 6 $+n^2 =$ $2n^3 - 3n^2 + n$ 6 $^{+}$ $6n^2$ 6 = $2n^3 + 3n^2 + n$ 6 = $n(n+1)(2n+1)$ 6 . 5. Prove that for any $n \in \mathbb{Z}^+$, $\frac{1}{2}$ 1
- 2 $+$ $\frac{1}{2^2} + \cdots + \frac{1}{2^r}$ $\frac{1}{2^n} = 1 - \frac{1}{2^n}$ 2^n **Solution:** The base case is $\frac{1}{2}$ 2 $= 1 - \frac{1}{21}$ $\frac{1}{2^1}$, which holds. If we assume that $\frac{1}{2}$ 2 $+$ 1 $\frac{1}{2^2} + \cdots +$ 1 $\frac{1}{2^{n-1}} = 1 - \frac{1}{2^{n-1}}$ $\frac{1}{2^{n-1}}$, then $\frac{1}{2}$ 2 $+$ 1 $\frac{1}{2^2} + \cdots + \frac{1}{2^n}$ $\frac{1}{2^n} =$ $\sqrt{ }$ $1 - \frac{1}{2^n}$ 2^{n-1} \setminus $+$ 1 $\frac{1}{2^n} = 1 - \frac{2}{2^n}$ $\frac{2}{2^n}$ + 1 $\frac{1}{2^n} = 1 - \frac{1}{2^n}$ $\frac{1}{2^n}$.
- 6. Consider the following inductive "proof" that all horses are the same color.

Let $P(n)$ be the statement that all groups of n horses are the same color. Clearly $P(1)$ is true, because if you only have one horse then all the horses you have are the same color. In the inductive step, suppose that $P(n)$ is true. Then if you have $n+1$ horses, the first n are all the same color, and the last n are the same color. The $n-1$ horses shared between these two groups must all be the same color, so the first and last horse must also be the same color, and therefore all $n+1$ horses are the same color. Therefore $P(n) \rightarrow P(n+1)$ is true for all n, and since we have the base case $P(1)$, we have that $P(n)$ is true for all n.

Why is this wrong?

Solution: The inductive step $P(n) \to P(n+1)$ doesn't work for $n = 1$, because when you only have two horses, there aren't any horses shared between the first one and the last one $(n - 1 = 0)$.