Finite Element Analysis of a Nematic Liquid Crystal Landau-de Gennes Model with Quartic Elastic Terms

Jacob Elafandi

UC Berkeley Department of Mathematics

January 9, 2025

Outline

Background Measures of orientational order Biaxial nematics The tensor order parameter Q

Phenomenontological theory Landau-de Gennes energy model Oseen-Frank energy model Golovaty et al. energy model

Numerical model Reformulation Finite element discretization Numerical results

What are liquid crystals?

- Rod-like or disc-like molecules: orientation matters
- · Intermediate phase of matter between crystalline solid and isotropic liquid

Figure 1: Molecules in a small ball within an isotropic fluid (left) and a liquid crystal (right). Source: [2]

Orientational order

- Director $\vec{n}(\vec{x},t)$
- Molecular orientation angle θ_m
- Scalar order parameter $S=rac{1}{2}\int_{\mathcal{B}}(3\cos^2 heta_m-1)f(heta_m)\,dec{x}$
- Crystal: S = 1. Isotropic: S = 0. Randomly oriented perpendicular to $\vec{n}: S = -\frac{1}{2}$ (unusual).

Figure 2: Probability distribution function for the angle between a molecule and the director, when the system has high (left) or low (right) orientational order. Source: [2]

Types of liquid crystals

- Nematic (what we'll be talking about today): No positional order
- Smectic: Layers, either perpendicular to director (Smectic A) or skew (Smectic C)
- Cholesterolic: Director field spirals in a helix
- etc.

Figure 3: Molecular arrangements for different types of liquid crystals. Source: [3]

Uniaxial nematic arrangement

Figure 4: A uniaxial distribution of molecules with director z', viewed along each axis. Source: [2]

Biaxial nematic arrangement

Figure 5: A biaxial distribution of molecules with primary director z' and secondary director x', viewed along each axis. Source: [2]

Constructing a theory

- $\vec{n} = (\cos\theta\cos\phi, \cos\theta\sin\phi, \sin\theta)$
- $\vec{m} = (\sin\phi\cos\psi \cos\phi\sin\psi\sin\theta, -\sin\phi\sin\psi\sin\theta \cos\phi\cos\psi, \\ \sin\psi\cos\theta)$
- Theory depends on five (dependent) variables: heta , ϕ , ψ , S_1 , S_2
- Issue: Degenerate when $heta=rac{\pi}{2}$

Figure 6: The directors n and m in terms of Euler angles. Source: [2]

The tensor order parameter **Q**

$$Q=S_1(ec{n}\otimesec{n})+S_2(ec{m}\otimesec{m})-rac{1}{3}(S_1+S_2)I$$

- Symmetric and traceless
- No problems with degeneracies
- Uniaxial when two eigenvalues are the same:

$$\begin{split} \lambda_1 &= (2S_1 - S_2)/3\\ \lambda_2 &= -(S_1 + S_2)/3\\ \lambda_3 &= (2S_2 - S_1)/3 \end{split}$$

The nitty-gritty details

$$Q = egin{pmatrix} q_1 & q_2 & q_3 \ q_2 & q_4 & q_5 \ q_3 & q_5 & -q_1 - q_4 \end{pmatrix}$$

$$\begin{split} q_1 &= S_1 \cos^2 \theta \cos^2 \phi + S_2 (\sin \phi \cos \psi - \cos \phi \sin \psi \sin \theta)^2 - \frac{1}{3} (S_1 + S_2) \\ q_2 &= S_1 \cos^2 \theta \sin \phi \cos \phi - S_2 (\cos \phi \cos \psi + \sin \phi \sin \psi \sin \theta) \\ &* (\sin \phi \cos \psi - \cos \phi \sin \psi \sin \theta) \\ q_3 &= S_1 \sin \theta \cos \theta \cos \phi + S_2 \sin \psi \cos \theta (\sin \psi \cos \psi - \cos \phi \sin \psi \sin \theta) \\ q_4 &= S_1 \cos^2 \theta \sin^2 \phi + S_2 (\cos \phi \cos \psi + \sin \phi \sin \psi \sin \theta)^2 - \frac{1}{3} (S_1 + S_2) \\ q_5 &= S_1 \cos \theta \sin \theta \sin \phi - S_2 \sin \psi \cos \theta (\cos \phi \cos \psi + \sin \phi \sin \psi \sin \theta) \end{split}$$

Free energy of a liquid crystal sample

Components include (quoting Mottram [2]):

- "the elastic energy of any **distortion** to the structure of the material"
- "thermotropic energy which dictates the preferred phase of the material"
- "electric and/or magnetic energy from an externally applied electric or magnetic field and, in polar materials, the internal self-interaction energy of the polar molecules"
- "**surface** energy terms representing the interaction energy between the bounding surface and the liquid crystal molecules at the surface"

$$egin{aligned} \mathcal{F} &= \mathcal{F}_{distortion} + \mathcal{F}_{thermotropic} + \mathcal{F}_{electromagnetic} + \mathcal{F}_{surface} \ &= \int_{\Omega} (F_d + F_t + F_e) \, dec{x} + \int_{\partial\Omega} F_s \, ds \end{aligned}$$

Landau-de Gennes thermotropic energy

- · Describes what state the material would prefer to be in
- High temperatures: Minimum at ${m Q}=0$ (isotropic)
- Low temperatures: Minimum at three uniaxial states ($m{S}_1=0,m{S}_2=0$, or $m{S}_1=m{S}_2$)
- For temperature-dependent a, b, and c, the Landau-de Gennes energy is defined as

$$F_t = a \operatorname{tr}(Q^2) + \frac{2b}{3} \operatorname{tr}(Q^3) + \frac{c}{2} \operatorname{tr}^2(Q^2)$$

- When $a < rac{b^2}{27c}$, minimizers of F_t are uniaxial
- · Golovaty et al. [1] make this assumption, define the minimal set

$$\mathcal{N} = \left\{ s_0 \left(ec{n} \otimes ec{n} - rac{1}{3}I
ight) : ec{n} \in \mathbb{S}^2
ight\}$$

and add an ignorable constant such that $F_t(\mathcal{N})=0$

Landau-de Gennes elastic energy

• Mottram [2] again: "It is, generally, energetically favourable for Q to be constant throughout the material and any gradients in Q would lead to an increase in distortional energy. F_d therefore depends on the spatial derivatives of Q."

$$\mathcal{F}_{LdG}(Q) = \int_{\Omega} \sum_{i,j,k=1}^{3} \left(\frac{L_1}{2} Q_{ij,k}^2 + \frac{L_2}{2} Q_{ij,j} Q_{ik,k} + \frac{L_3}{2} Q_{ik,j} Q_{ij,k} \right) d\vec{x}$$

• L_i 's are material constants

Oseen-Frank energy

- Director-based, not Q-tensor-based
- For some $ec{n}:\Omega
 ightarrow\mathbb{S}^2$, we have

$$\begin{split} \mathcal{F}_{OF}(\vec{n}) &= \int_{\Omega} \left(\frac{K_1}{2} (\operatorname{div} \vec{n})^2 + \frac{K_2}{2} ((\operatorname{curl} \vec{n}) \cdot \vec{n})^2 + \frac{K_3}{2} |(\operatorname{curl} \vec{n}) \times \vec{n}|^2 \\ &+ \frac{K_2 + K_4}{2} (\operatorname{tr} (\nabla \vec{n})^2 - (\operatorname{div} \vec{n})^2) \right) d\vec{x} \end{split}$$

Correspondence between OF and LdG

- Motivation: Find a Q-tensor-based model which corresponds smoothly to $\mathcal{F}_{d,OF}$
- Previous attempts have added another term to $\mathcal{F}_{d,LdG}$:

$$\int_{\Omega} Q_{lk} Q_{ij,k} Q_{ij,l} \, d\vec{x}$$

• Problem: Cubic term means energy is unbounded from below

٠

Golovaty et al. energy model

Solution: Define model with quartic terms instead

$$\begin{split} \mathcal{F}_{GNS}(Q) &= \int_{\Omega} \left(\frac{L_1}{2} \left| \left(\frac{s_0}{3} I + Q \right) \operatorname{div} Q \right|^2 + \frac{L_2}{2} \left| \left(\frac{s_0}{3} I + Q \right) \operatorname{curl} Q \right|^2 \right. \\ &+ \frac{L_3}{2} \left| \left(\frac{2s_0}{3} I - Q \right) \operatorname{div} Q \right|^2 + \frac{L_4}{2} \left| \left(\frac{2s_0}{3} I - Q \right) \operatorname{curl} Q \right|^2 \\ &+ F_t(Q) \right) d\vec{x} \end{split}$$

- s_0 is the scalar order parameter of the uniaxial tensors which minimize F_t
- + $s_0^4L_4=K_2+K_4$ and $s_0^4(L_i+L_4)=K_i$ for i=1,2,3

Divergence and curl of tensor fields

$$\operatorname{div} A = \sum_{j=1}^{3} (\operatorname{div} A_j) \vec{e}_j = \begin{bmatrix} A_{11,1} + A_{12,2} + A_{13,3} \\ A_{21,1} + A_{22,2} + A_{23,3} \\ A_{31,1} + A_{32,2} + A_{33,3} \end{bmatrix}$$

$$(\operatorname{curl} A)\vec{v} = \operatorname{curl}(A^{\top}\vec{v}) \quad \forall \vec{v} \in \mathbb{R}^{3}$$

 $\operatorname{curl} A = \sum_{i,j,k,m=1}^{3} \varepsilon_{ijk} A_{mj,i} \vec{e}_{k} \otimes \vec{e}_{m}$

Relevant property of curl:

 $\operatorname{curl}\left(\vec{m}\otimes\vec{m}
ight)=\left[\operatorname{curl}\left(m_{1}\vec{m}
ight)\quad\operatorname{curl}\left(m_{2}\vec{m}
ight)\quad\operatorname{curl}\left(m_{3}\vec{m}
ight)
ight]$

Golovaty et al.'s proposition

+ Let $Q\in H^1(\Omega;\mathcal{N})$, such that $Q=s_0(ec{n}\otimesec{n}-I/3)$ for $ec{n}\in H^1(\Omega;\mathbb{S}^2)$. Then

 $\mathcal{F}_{GNF}(Q) = \mathcal{F}_{OF}(\vec{n}).$

- Proof: Too long for this talk. I've cited the paper in the references
- After proving this result, Golovaty et al. relax the condition $Q \in \mathcal{N}$ to $Q \in \mathbb{S}^2$ to allow for biaxial states, then proves a Γ -convergence result as nematic correlation length divided by domain size tends to zero

A slightly modified energy

$$\begin{split} \mathcal{F}(Q) &= \int_{\Omega} \left(\frac{L_1}{2} \left| \left(\frac{s_0}{3} I + Q \right) \operatorname{div} Q \right|^2 + \frac{L_2}{2} \left| \left(\frac{s_0}{3} I + Q \right) \operatorname{curl} Q \right|^2 \\ &+ \frac{L_3}{2} \left| \left(\frac{2s_0}{3} I - Q \right) \operatorname{div} Q \right|^2 + \frac{L_4}{2} \left| \left(\frac{2s_0}{3} I - Q \right) \operatorname{curl} Q \right|^2 \\ &+ \frac{L_5}{2} |Q|^2 |\nabla Q|^2 + F_t(Q) \right) d\vec{x} \end{split}$$

- Adding a fifth quartic term to make a $\Gamma\text{-}\mathrm{convergence}$ result later on possible
- This model also reduces to Oseen-Frank in the uniaxial case for suitable L_i 's

Dissipation law

• Formal definition of symmetric traceless tensor space:

$$\mathcal{S} = \{ \boldsymbol{Q} : \boldsymbol{Q} \in \mathbb{R}^{3 \times 3}, \, \boldsymbol{Q} = \boldsymbol{Q}^{\top}, \, \mathrm{tr}\left(\boldsymbol{Q}\right) = 0 \}$$

• Projection operator:

$$\mathscr{P}(A) = \frac{1}{2}(A + A^{\top}) - \frac{\operatorname{tr}(A)}{3}I$$

Gradient descent:

$$\frac{\partial Q}{\partial t} = -M\mathscr{P}\left(\frac{\delta\mathcal{F}}{\delta Q}\right)$$

• Dissipation law from chain rule:

$$\frac{d\mathcal{F}}{dt} = \int_{\Omega} \mathscr{P}\left(\frac{\delta\mathcal{F}}{\delta Q}\right) : \frac{\partial Q}{\partial t} \, d\vec{\mathbf{x}} = \left\|\frac{\partial Q}{\partial t}\right\|^2$$

Energy components

$$\begin{split} S_1(Q) &= \frac{s_0}{3}I + Q \\ \mathcal{F}_1(Q) &= \frac{L_1}{2} \|S_1 \operatorname{div} Q\|^2 \\ \mathcal{F}_3(Q) &= \frac{L_3}{2} \|S_2 \operatorname{div} Q\|^2 \\ \mathcal{F}_5(Q) &= \frac{L_5}{2} \|Q| \nabla Q\|^2 \\ \mathcal{F}_6(Q) &= \int_{\Omega} \left(a \operatorname{tr}(Q^2) + \frac{2b}{3} \operatorname{tr}(Q^3) + \frac{c}{2} \operatorname{tr}^2(Q^2) \right) d\vec{x} \\ \mathcal{F}(Q) &= \mathcal{F}_1(Q) + \mathcal{F}_2(Q) + \mathcal{F}_3(Q) + \mathcal{F}_4(Q) + \mathcal{F}_5(Q) \end{split}$$

Derivatives of energy components

$$\begin{split} &\frac{\delta \mathcal{F}_1}{\delta Q} = L_1 \left(-\nabla (S_1^2 \operatorname{div} Q) + S_1 \operatorname{div} Q (\operatorname{div} Q)^\top \right) \\ &\frac{\delta \mathcal{F}_2}{\delta Q} = L_2 \left(\operatorname{curl} (S_1^2 \operatorname{curl} Q)^\top + S_1 \operatorname{curl} Q (\operatorname{curl} Q)^\top \right) \\ &\frac{\delta \mathcal{F}_3}{\delta Q} = L_3 \left(-\nabla (S_2^2 \operatorname{div} Q) + S_2 \operatorname{div} Q (\operatorname{div} Q)^\top \right) \\ &\frac{\delta \mathcal{F}_4}{\delta Q} = L_4 \left(\operatorname{curl} (S_2^2 \operatorname{curl} Q)^\top + S_2 \operatorname{curl} Q (\operatorname{curl} Q)^\top \right) \\ &\frac{\delta \mathcal{F}_5}{\delta Q} = L_5 \left(-\nabla (|Q|^2 \nabla Q) + |\nabla Q|^2 Q \right) \\ &\frac{\delta \mathcal{F}_6}{\delta Q} = 2aQ - 2bQ^2 + 2c \operatorname{tr} (Q^2)Q \end{split}$$

Finite elements

Figure 7: A whiteboard drawing demonstrating the partition of a square into finite elements

Weak solutions

- Given a tetrahedral mesh $\{\Omega_\ell\}$ of Ω with element diameter \pmb{h} , define

$$\begin{split} \mathcal{T}_h^0 &= \{\varphi: \Omega \to \mathcal{S}: \varphi \text{ continuous}, \varphi|_{\Omega_\ell} \text{ linear}, \varphi|_{\partial\Omega} = 0 \} \\ \mathcal{T}_h^g &= \{\varphi + g: \varphi \in \mathcal{T}_h^0 \} \end{split}$$

where g is a Dirichlet boundary condition

- Basis functions: Multiply basis of ${\mathcal S}$ by "hat" functions, which are zero on all nodes except one
- The discrete formulation is to find $Q_h \in \mathcal{T}_h^g$ such that

$$\left\langle \frac{Q_h^{n+1} - Q_h^n}{\Delta t}, \varphi \right\rangle = -MH^{n+\frac{1}{2}}(\varphi) \quad \forall \varphi \in \mathcal{T}_h^0$$

where $H^{n+\frac{1}{2}}(\varphi)$ represents " $\left\langle \frac{\delta \mathcal{F}}{\delta Q_h^{n+\frac{1}{2}}}, \varphi \right\rangle$ "

Discretization

The discrete value of
$$(\cdot)(\vec{x}, t)$$
 at time t^n is denoted $(\cdot)^n(\vec{x})$.
The average of $(\cdot)^n$ and $(\cdot)^{n+1}$ is denoted $(\cdot)^{n+\frac{1}{2}}$.
 $H_1^{n+\frac{1}{2}}(\varphi) = L_1 \left\langle (S_{1,h} \operatorname{div} Q_h)^{n+\frac{1}{2}}, S_{1,h} \operatorname{div} \varphi + \varphi \operatorname{div} Q_h^{n+\frac{1}{2}} \right\rangle$
 $H_2^{n+\frac{1}{2}}(\varphi) = L_2 \left\langle (S_{1,h} \operatorname{curl} Q_h)^{n+\frac{1}{2}}, S_{1,h} \operatorname{curl} \varphi + \varphi \operatorname{curl} Q_h^{n+\frac{1}{2}} \right\rangle$
 $H_3^{n+\frac{1}{2}}(\varphi) = L_3 \left\langle (S_{2,h} \operatorname{div} Q_h)^{n+\frac{1}{2}}, S_{2,h} \operatorname{div} \varphi - \varphi \operatorname{div} Q_h^{n+\frac{1}{2}} \right\rangle$
 $H_4^{n+\frac{1}{2}}(\varphi) = L_4 \left\langle (S_{2,h} \operatorname{curl} Q_h)^{n+\frac{1}{2}}, S_{2,h} \operatorname{curl} \varphi - \varphi \operatorname{curl} Q_h^{n+\frac{1}{2}} \right\rangle$
 $H_5^{n+\frac{1}{2}}(\varphi) = L_5 \left(\left\langle (|\nabla Q_h|^2)^{n+\frac{1}{2}} Q_h^{n+\frac{1}{2}}, \varphi \right\rangle + \left\langle (|Q_h|^2)^{n+\frac{1}{2}} \nabla Q_h^{n+\frac{1}{2}}, \nabla \varphi \right\rangle \right)$
 $H_6^{n+\frac{1}{2}}(\varphi) = \left\langle 2aQ_h^{n+\frac{1}{2}} - \frac{2b}{3}(2(Q_h^2)^{n+\frac{1}{2}} + Q_h^{n+1}Q_h) + 2c(\operatorname{tr}(Q_h^2))^{n+\frac{1}{2}}Q_h^{n+\frac{1}{2}}, \varphi \right\rangle$
 $H^{n+\frac{1}{2}} = H_1^{n+\frac{1}{2}} + H_2^{n+\frac{1}{2}} + H_3^{n+\frac{1}{2}} + H_4^{n+\frac{1}{2}} + H_5^{n+\frac{1}{2}} + H_6^{n+\frac{1}{2}}$

Discrete dissipation law

• The scheme on the previous two slides satisfies the semi-discrete dissipation law

$$\frac{\mathcal{F}(Q_h^{n+1}) - \mathcal{F}(Q_h^n)}{\Delta t} = -\frac{1}{M} \left\| \frac{Q_h^{n+1} - Q_h^n}{\Delta t} \right\|^2$$

• Q_h^{n+1} is uniquely defined and can be found by fixed-point iteration (due to Banach's theorem)

Numerical results: Convergence tests

- Domain: $\Omega = [0,2]^2$
- Initial and boundary conditions:

$$Q_0 = ec{n}_0 ec{n}_0^ op - rac{|ec{n}_0|^2}{2} I_2,$$

where

$$\vec{n}_0 = \begin{pmatrix} x(2-x)y(2-y)\\\sin(\pi x)\sin(\pi y/2) \end{pmatrix}$$

- Max time: T = 0.8
- · Grid size and number of time steps vary between experiments

Numerical results: Spatial refinement

1600 time steps per experiment. Reference solution Q_{ref} calculated with h=0.005 using 25000 time steps.

h	$\ Q_h-Q_{ref}\ $	Order	$ \mathcal{F}(Q_h) - \mathcal{F}(Q_{ref}) $	Order
0.2	4.3506×10^{-2}	—	9.7867×10^{-4}	_
0.1	1.5921×10^{-2}	1.4503	3.2908×10^{-4}	1.5724
0.05	3.5480×10^{-3}	2.1659	7.3880×10^{-5}	2.1552
0.025	8.3939×10^{-4}	2.0796	1.7793×10^{-5}	2.0539

Numerical results: Time refinement

h=2/30 for all experiments. Reference solution $Q_{\it ref}$ taken with the same h and 80000 time steps.

Δt	$\ Q_h-Q_{ref}\ $	Order	$ \mathcal{F}(Q_h) - \mathcal{F}(Q_{ref}) $	Order
4×10^{-3}	4.2744×10^{-6}	—	4.7072×10^{-7}	_
$2 imes 10^{-3}$	1.0684×10^{-6}	2.0002	1.1767×10^{-7}	2.0001
1×10^{-3}	2.6708×10^{-7}	2.0001	2.9415×10^{-8}	2.0001
5×10^{-4}	6.6771×10^{-8}	2.0000	7.3541×10^{-9}	1.9999
$2.5 imes 10^{-4}$	1.6684×10^{-8}	2.0007	1.8377×10^{-9}	2.0006

Numerical results: Maximum Δt

For each h, we find the maximum Δt for which the fixed-point iteration converges for at least 100 time steps

h	Max convergent Δt	Order	
0.2	7.9801×10^{-2}	_	
0.1	2.2379×10^{-2}	1.8342	
0.05	7.7537×10^{-3}	1.5292	
0.025	2.0005×10^{-3}	1.9545	
0.0125	4.0707×10^{-4}	2.2970	
0.00625	9.1601×10^{-5}	2.1518	

Numerical results: Tactoid simulations

- Ω is the unit circle, discretized by a Delaunay triangulation with $5809~{\rm nodes}$ and $11366~{\rm elements}$
- Time step: $\Delta t = 0.01$
- Initial and boundary conditions:

$$Q_0 = \sqrt{rac{-2a}{c}} \left(ec{n}_0(heta)ec{n}_0^ op(heta) - rac{1}{2}I_2
ight)\chi_{r^2\geq 0.3}$$

where $ec{n}_0: [0,2\pi)
ightarrow \mathbb{S}^1$ depends on the experiment

- Isotropic tactoid surrounded by a nematic sample
- Cue the animations!

References

- [1] DMITRY GOLOVATY, MICHAEL NOVACK, and PETER STERNBERG. "A novel Landau-de Gennes model with quartic elastic terms". In: European Journal of Applied Mathematics 32.1 (Mar. 2020), pp. 177–198. ISSN: 1469-4425. DOI: 10.1017/s09567925200008x. URL: http://dx.doi.org/10.1017/S09567925200008X.
- [2] Nigel J. Mottram and Christopher J. P. Newton. *Introduction to Q-tensor theory*. 2014. arXiv: 1409.3542 [cond-mat.soft].
- [3] UKEssays. Classifications of Liquid Crystals. URL: https://om.ukessays.com/essays/chemistry/classificationsliquid-crystals-7625.php?vref=1. (accessed: 04.25.2024).

