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What are liquid crystals?

* Rod-like or disc-like molecules: orientation matters

+ Intermediate phase of matter between crystalline solid and isotropic liquid

Figure 1: Molecules in a small ball within an isotropic fluid (left) and a liquid crystal (right).
Source: [2]
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Orientational order

« Director 1i(X, t)
* Molecular orientation angle 6,
+ Scalar order parameter S = £ [,.(3 cos? O, — 1) f(6) dX

« Crystal: S = 1. Isotropic: S = 0. Randomly oriented perpendicular to 7i: S = f%
(unusual).
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Figure 2: Probability distribution function for the angle between a molecule and the director,
when the system has high (left) or low (right) orientational order. Source: [2]
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Types of liquid crystals

+ Nematic (what we'll be talking about today): No positional order

+ Smectic: Layers, either perpendicular to director (Smectic A) or skew (Smectic C)
+ Cholesterolic: Director field spirals in a helix

. etc.
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Figure 3: Molecular arrangements for different types of liquid crystals. Source: [3]
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Uniaxial nematic arrangement
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Figure 4: A uniaxial distribution of molecules with director z’, viewed along each axis. Source:
[2]
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Biaxial nematic arrangement

Figure 5: A biaxial distribution of molecules with primary director z’ and secondary director X/,
viewed along each axis. Source: [2]
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Constructing a theory

« 71 = (cos 6 cos ¢, cos 6 sin ¢, sin )

« m = (sin ¢ cos 1) — cos ¢ sin ¢ sin 6, — sin ¢ sin ¢ sin § — cos ¢ cos 1Y,
sin ¢ cos 0)

+ Theory depends on five (dependent) variables: 6, ¢, 1, S1, Sa

* Issue: Degenerate when 6§ = g

Figure 6: The directors n and m in terms of Euler angles. Source: [2]
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The tensor order parameter Q

Q=8 (nen)+S(mam)— -(S1 +S)I

W =

+ Symmetric and traceless
* No problems with degeneracies

+ Uniaxial when two eigenvalues are the same:

M = (281 — 85)/3
Ay = —(Sl +Sg)/3
A3 = (2S2 —Sl)/?)
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The nitty-gritty details

qi1 Q2 qs
Q=19 q qs
qd3 45 —q1—(qu

. . . 1
q1 = S; cos? A cos? ¢ + Sy(sin ¢ cos 1) — cos ¢ sin 1 sin )% — g(Sl +S5)

G2 = S cos® fsin ¢ cos ¢ — So(cos ¢ cos v + sin ¢ sin ¢ sin 6)
* (sin ¢ cos 1) — cos ¢ sin ¢ sin 0)
qs = S1sinf cos ) cos ¢ + Sy sin 1) cos §(sin 1) cos ¢ — cos ¢ sin ) sin )

qs = S1 cos? 0sin” ¢ + Sy (cos ¢ cos i + sin ¢ sin ¢ sin §)? — %(Sl +83)

gs = S1cosfsinfsin ¢ — Ss sin ¢ cos H(cos ¢ cos ¥ + sin ¢ sin 1 sin )
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Free energy of a liquid crystal sample

Components include (quoting Mottram [2]):
+ “the elastic energy of any distortion to the structure of the material”
+ “thermotropic energy which dictates the preferred phase of the material”

o U

electric and/or magnetic energy from an externally applied electric or magnetic
field and, in polar materials, the internal self-interaction energy of the polar
molecules”

+ “surface energy terms representing the interaction energy between the bounding
surface and the liquid crystal molecules at the surface”

F=F distortion T Fi thermotropic + F electromagnetic + F surface

:/(Fd+Ft+Fe)d5c’+/ F;ds
Q

o0
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Landau-de Gennes thermotropic energy

+ Describes what state the material would prefer to be in
* High temperatures: Minimum at Q = 0 (isotropic)
+ Low temperatures: Minimum at three uniaxial states (S = 0,S; = 0,0r S; = S5)

+ For temperature-dependent a, b, and ¢, the Landau-de Gennes energy is defined as

Fy = atr(Q*) + 4 tr(Q%) + 5 tr*(Q%)

* Whena < 27 , minimizers of F} are uniaxial

+ Golovaty et al. [1] make this assumption, define the minimal set

N:{so (ﬁ@ﬁ—é[) :ﬁeSQ}

and add an ignorable constant such that Fx(A) = 0
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Landau-de Gennes elastic energy

*+ Mottram [2] again: “It is, generally, energetically favourable for Q to be constant
throughout the material and any gradients in Q would lead to an increase in
distortional energy. F,; therefore depends on the spatial derivatives of Q.”

L L L: -
Frac(Q / Z ( SQl i+ ;Qij,jQik,k+;Qikaij,k> dx

ij,k=1

+ Ljs are material constants
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Oseen-Frank energy

+ Director-based, not Q-tensor-based

« Forsomei: ) — S2, we have

For(1t) = / (Igl(divﬁ)2 + %((curl i) - 1)% +
Q
K; + Ky

M

(tr (Vid)? — (divﬁ)2)> dx
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Correspondence between OF and LdG

* Motivation: Find a Q-tensor-based model which corresponds smoothly to 4 oF

* Previous attempts have added another term to Fg 46t

/Q Qu Q4 Q1 dX

+ Problem: Cubic term means energy is unbounded from below
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Golovaty et al. energy model

+ Solution: Define model with quartic terms instead

2 2

Fow(@ = [ (5 |(re Q) ave” |1+ ) e
5 (2301 Q) divQ (2301 Q) curl Q

L3 L4
+ Ft(Q)) dx

+7

* S is the scalar order parameter of the uniaxial tensors which minimize F;
° SéL4 = K2 + K4 and Sé(Ll' + L4) = Ki fori = 1, 27 3
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Divergence and curl of tensor fields

3 Aiiq +Ap2+Aizs
divA =) (divA)& = |As1y + Aszo + Asss
J=1 Az +Asz00 +Asz33

(curlA)o = curl(A'5) Vo€ R?
3
curlA = Z 5ykAmj,iék ® €m
i m=1

Relevant property of curl:

—

curl(m®@m) = [curl (mym) curl (mym) curl (mzm)
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Golovaty et al.’s proposition

« LetQ € HY(Q; N), suchthat Q = so(f @ i — I/3) for i € H(;S?). Then
Fenr(Q) = For(1).

+ Proof: Too long for this talk. I've cited the paper in the references

« After proving this result, Golovaty et al. relax the condition Q € N to Q € S? to
allow for biaxial states, then proves a ['-convergence result as nematic correlation
length divided by domain size tends to zero
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A slightly modified energy

2

J—'(Q):/Q(L;’( 1+Q) de‘ + 2 ‘(S—OI+Q) curle
L Ls

230 2 230
5 (I Q) divQ <I Q) curl Q

+ ZIHITQR +F(Q) ) d

.

+ Adding a fifth quartic term to make a I'-convergence result later on possible

+ This model also reduces to Oseen-Frank in the uniaxial case for suitable L;’s
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Dissipation law

+ Formal definition of symmetric traceless tensor space:
S={Q:QeR¥*>? Q=Q",tr(Q) =0}

* Projection operator:

P@)=@ara) - T
* Gradient descent: 20 SF
At

+ Dissipation law from chain rule:

dF OF
&_Q@( ) H
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Energy components

5@ =21+0 $:(Q) = 2ﬁf 0
F1(Q) = % 1S, div Q|? F2(Q) = 7 1Sy curl Q||
F5(Q) = 8, div Q| FiQ) = 2 s, curl @)

L
7(Q) = Z lleIvell”

Q- [ (a Q%) + (@) + (Q?)) iz
F(Q) = Fi(Q) + FalQ) + Fg(Q) ; f4(Q) LA (Q)
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Derivatives of energy components

% = Ly (~V($2divQ) + S, divQ (divQ) ")
% = Ly (curl (S2curl Q)T + Sy curl Q (curl Q) )
% = Ly (—V(S2divQ) + S> divQ (divQ) ")
% = Ly (curl (S3 curl Q)" + Sy curl Q (curl Q) ")
‘ig = Ls (-V(IQP*VQ) + IVQPQ)

5 Fe

=5 — 2aQ — 2bQ? + 2ctr (Q*)Q
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Finite elements

Figure 7: A whiteboard drawing demonstrating the partition of a square into finite elements
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Weak solutions

« Given a tetrahedral mesh {£,} of {2 with element diameter h, define

T = {p:Q — S: ¢ continuous, ¢|q, linear, ¢|so = 0}
TP ={p+g:9eT)}
where g is a Dirichlet boundary condition

+ Basis functions: Multiply basis of S by “hat” functions, which are zero on all nodes
except one

+ The discrete formulation is to find Qy, € 7;19 such that

n+1
<Q At i <P> =-MH"3(p) VpeTy

! 0
where H" 2 () represents " 7]: N7 "
sQptE
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Discretization

The discrete value of (-)(X, t) at time t" is denoted (-)"(X).
The average of ()" and (-)™*! is denoted (-)™*2.

<Slhdvah yrta SlhdIVgOJrgodvah >
=1L, < (S1. curl Qp) nty ,S1p curlp + ¢ curlQh >
+% L3<Szhdvah yrta .Sy pdive — apleQh >
HT% L4< Sy, curl Q) nty ,Sop curlp — ¢ curlQh >
H; Ls ({(UVQuA™ Q) + () 10, V) )
Hﬁ( )= <2 aQ)t - G + 0 n) + 2e(er (@)L )

Hn+%:H"+z +H2+z +Hn+z +H"+z +Hr+2 +Hn+z
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Discrete dissipation law
+ The scheme on the previous two slides satisfies the semi-discrete dissipation law

FQ) - F(Qp) _
At

Qn+1 Qh
At

. QZH is uniquely defined and can be found by fixed-point iteration (due to
Banach's theorem)
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Numerical results: Convergence tests

+ Domain: 2 = [0, 2]?
+ Initial and boundary conditions:
7o

L il
Qo = rpry — ; I,

s [(X2-0y2-y)
™ \ sin(mx) sin(ry/2)
+ Max time: T = 0.8

+ Grid size and number of time steps vary between experiments

where
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Numerical results: Spatial refinement

1600 time steps per experiment. Reference solution Q. calculated with h = 0.005
using 25000 time steps.

h Qn — Qres| Order || [F(Qp) — F(Qrer)| | Order
0.2 || 4.3506 x 10~2 — 9.7867 x 1074 -
0.1 || 1.5921 x 10~2 | 1.4503 3.2908 x 10~* 1.5724
0.05 || 3.5480 x 1073 | 2.1659 7.3880 x 107° 2.1552

0.025 || 8.3939 x 10~* | 2.0796 1.7793 x 1075 | 2.0539
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Numerical results: Time refinement

h = 2/30 for all experiments. Reference solution Q,,taken with the same h and
80000 time steps.

At [Qn — Qrerl| | Order || |F(Qn) — F(Qrer)| | Order
4x1073 || 4.2744 x 1076 - 4.7072 x 107 —
2x 1073 || 1.0684 x 1076 | 2.0002 1.1767 x 107 2.0001
1x1073 || 2.6708 x 10~7 | 2.0001 2.9415 x 108 2.0001
5x107* || 6.6771 x 10~ | 2.0000 7.3541 x 1079 1.9999

2.5 x 107 || 1.6684 x 10~8 | 2.0007 1.8377 x 1079 2.0006
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Numerical results: Maximum At

For each h, we find the maximum At for which the fixed-point iteration converges for
at least 100 time steps

h Max convergent At | Order
0.2 7.9801 x 1072 —
0.1 2.2379 x 1072 | 1.8342
0.05 7.7537 x 1073 1.5292

0.025 2.0005 x 1073 1.9545
0.0125 4.0707 x 104 2.2970
0.00625 9.1601 x 10~° 2.1518
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Numerical results: Tactoid simulations

+ Qs the unit circle, discretized by a Delaunay triangulation with 5809 nodes and
11366 elements

+ Time step: At = 0.01

+ Initial and boundary conditions:

Qo =/ %261 (ﬁo(e)ﬁg(e) - ;h) Xr2>0.3

where i : [0,27) — S* depends on the experiment
+ Isotropic tactoid surrounded by a nematic sample

+ Cue the animations!
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