Chapter 10.?: Random Graphs

Wednesday, August 12

Summary

- Almost all graphs have a property Q if the probability that (a random graph on n vertices has property $Q)$ approaches 1 as $n \rightarrow \infty$.
- Turan's Theorem: Let G be a graph with n vertices such that G is K_{r+1} free. Then the number of edges in G is at most $\left(1-\frac{1}{r}\right) \cdot \frac{n^{2}}{2}$.
- Also Turan's Theorem: Any graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ contains an independent set of size at least $|V| /(D+1)$, where $D=2|E| /|V|$ is the average degree of the graph.

Random Graphs

1. (\star) Let G be a bipartite graph with $n \geq 3$ vertices, and pick 3 distinct vertices at random. Prove that the probability that all 3 vertices are independent is at least $\frac{1}{4}-\frac{K}{n}$ where K is some constant independent of n.
2. Show that almost all graphs are not trees.
3. (\star) Show that almost all graphs have a triangle.
4. Let $T(G)$ be the number of triangles in a graph G. If G has n vertices then what is $E(T(G))$? (Hard) What is $\operatorname{Var}(T(G))$?
5. Let $C(G)$ be the number of 4 -cycles in a graph G. If G has n vertices then what is $E(C(G))$? (Hard) What is $\operatorname{Var}(C(G))$?

Turan's Theorem

1. Show that the two formulations of Turan's theorem are equivalent.
2. (\star) Define the Turan graph $T(n, r)$ as follows: partition the vertices into r sets of equal or nearly equal size and connect any pair of vertices that are not in the same set. Prove that $T(n, r)$ does not contain K_{r+1} as a subgraph.
3. Show that $T(n, r)$ has the maximum number of edges of any n-vertex graph not containing K_{r+1}.

Miscellany

1. Define the clique number of a graph, $\omega(G)$, to be the largest m such that K_{m} is a subgraph of G. Show that $\chi(G) \geq \omega(G)$.
2. Show that $\omega(G)=\alpha(\bar{G})$.
