Chapter 10.?: Random Graphs

Wednesday, August 12

Summary

- Almost all graphs have a property Q if the probability that (a random graph on n vertices has property Q) approaches 1 as $n \to \infty$.
- Turan's Theorem: Let G be a graph with n vertices such that G is K_{r+1} -free. Then the number of edges in G is at most $\left(1-\frac{1}{r}\right)\cdot\frac{n^2}{2}$.
- Also Turan's Theorem: Any graph G = (V, E) contains an independent set of size at least |V|/(D+1), where D = 2|E|/|V| is the average degree of the graph.

Random Graphs

- 1. (\bigstar) Let G be a bipartite graph with $n \geq 3$ vertices, and pick 3 distinct vertices at random. Prove that the probability that all 3 vertices are independent is at least $\frac{1}{4} \frac{K}{n}$ where K is some constant independent of n.
- 2. Show that almost all graphs are not trees.
- 3. (\bigstar) Show that almost all graphs have a triangle.
- 4. Let T(G) be the number of triangles in a graph G. If G has n vertices then what is E(T(G))? (Hard) What is Var(T(G))?
- 5. Let C(G) be the number of 4-cycles in a graph G. If G has n vertices then what is E(C(G))? (Hard) What is Var(C(G))?

Turan's Theorem

- 1. Show that the two formulations of Turan's theorem are equivalent.
- 2. (\bigstar) Define the Turan graph T(n,r) as follows: partition the vertices into r sets of equal or nearly equal size and connect any pair of vertices that are not in the same set. Prove that T(n,r) does not contain K_{r+1} as a subgraph.
- 3. Show that T(n,r) has the maximum number of edges of any n-vertex graph not containing K_{r+1} .

Miscellany

- 1. Define the clique number of a graph, $\omega(G)$, to be the largest m such that K_m is a subgraph of G. Show that $\chi(G) \geq \omega(G)$.
- 2. Show that $\omega(G) = \alpha(\overline{G})$.