Chapter 10.8: Graph Coloring
 Tuesday, August 11

Summary

- Dual graph: formed by putting a vertex at each face of a graph and connecting vertices if the corresponding faces are adjacent.
- Chromatic number $(\chi(G))$: smallest number of colors required to color each vertex of the graph so that no adjacent vertices have the same color.
- Independence number $(\alpha(G))$: the size of the largest set S of vertices such that no two vertices in S share an edge.
- Greedy algorithm: visit the vertices in random order and color each vertex with the first available color.
- If G is planar then $\chi(G) \leq 4$.

Coloring and Independence

1. (\star) Find $\alpha(G)$ and $\chi(G)$ for each of the following:
(a) K_{n}
(b) C_{n}
(c) P_{n}
(d) $K_{m, n}$
2. What is $\chi(G)$, where G is a tree?
3. (\star) For any graph G with n vertices, $\chi(G) \leq n-\alpha(G)+1$.
4. For any graph G with n vertices, $\alpha(G) \chi(G) \geq n$.

More Coloring

1. For every n, find a 2 -colorable graph with n vertices such that every vertex has degree $\geq(n-1) / 2$.
2. $(\boldsymbol{\star})$ If every vertex in a graph G has degree $\leq d$, then G is $(d+1)$-colorable.
3. (\star) If all cycles in a graph G have length divisible by k, then k is k-colorable.
4. Every planar graph is 6 -colorable (Hint: induction).
5. If a planar graph has n vertices then $\alpha(G) \geq n / 6$.
6. Every triangle-free planar graph has a vertex of degree ≤ 3 (Use a result about the number of edges and vertices from yesterday).
7. Every triangle-free planar graph is 4-colorable.
8. (\star) Find a triangle-free planar graph with 11 vertices that is not 3 -colorable. (Hint: it has 5 -fold rotational symmetry.)

Challenge

1. (\star) Find the duals of each of the five Platonic solids.
2. For every graph show that there is some ordering of the vertices for which the greedy algorithm will use $\chi(G)$ colors (the minimum).
3. Find a planar graph and an ordering of the vertices for which the greedy algorithm uses 5 or more colors.

Suggested From Rosen

10.8: 5-10, 13, 32, 35

