Chapter 10.8: Graph Coloring
 Tuesday, August 11

Summary

- Dual graph: formed by putting a vertex at each face of a graph and connecting vertices if the corresponding faces are adjacent.
- Chromatic number $(\chi(G))$: smallest number of colors required to color each vertex of the graph so that no adjacent vertices have the same color.
- Independence number $(\alpha(G))$: the size of the largest set S of vertices such that no two vertices in S share an edge.
- Greedy algorithm: visit the vertices in random order and color each vertex with the first available color.
- If G is planar then $\chi(G) \leq 4$.

Coloring and Independence

1. (\star) Find $\alpha(G)$ and $\chi(G)$ for each of the following:
(a) $K_{n}: \alpha(G)=1, \chi(G)=n$
(b) $C_{n}: \alpha(G)=\lfloor n / 2\rfloor, \chi(G)=2$ if n is even and 3 if n is odd.
(c) $P_{n}: \alpha(G)=\lceil n / 2\rceil, \chi(G)=2$.
(d) $K_{m, n}: \alpha(G)=\max (m, n), \chi(G)=2$.
2. What is $\chi(G)$, where G is a tree? $\chi(G)=2$. Prove by induction.
3. (\star) For any graph G with n vertices, $\chi(G) \leq n-\alpha(G)+1$.

Color $\alpha(G)$ of the vertices with 1 of the colors, then each of the other $n-\alpha(G)$ vertices gets a different color: total number of colors is $n-\alpha(G)+1$.
4. For any graph G with n vertices, $\alpha(G) \chi(G) \geq n$.

Let C_{i} be the set of vertices given color i. Since all of these vertices must be non-adjacent we know that $\left|C_{i}\right| \leq \alpha(G)$ for any i. Therefore for any coloring $n=\sum_{i}\left|C_{i}\right| \leq \sum_{i} \alpha(G) \leq \chi(G) \alpha(G)$.

More Coloring

1. For every n, find a 2 -colorable graph with n vertices such that every vertex has degree $\geq(n-1) / 2$. Make a bipartite graph with an equal number of vertices on both sides (or as equal as possible).
2. ($\boldsymbol{\star}$) If every vertex in a graph G has degree $\leq d$, then G is $(d+1)$-colorable.

Use the greedy algorithm. Any vertex has at most d neighbors so at least 1 color is guaranteed to be available to color that vertex.
3. (\star) If all cycles in a graph G have length divisible by $k \geq 2$, then G is k-colorable.

Rough sketch: Assume that all vertices in the graph have degree ≥ 2. Walk around the graph aimlessly, coloring each vertex you visit with a new color (and starting over at 1 after reaching k). The fact that the length of every cycle is divisible by k means that if you reach the same vertex twice then you will be trying to color it the same color as before, having progressed a multiple of k steps.
Then color all of the vertices of degree 1 .
4. Every planar graph is 6-colorable (Hint: induction).

Every planar graph has a vertex of degree ≤ 5, so after coloring the rest of the graph this vertex will be guaranteed to have a legal coloring. Remove this vertex, find (by inductive assumption) a 6 -coloring of the remaining planar graph, then color the last vertex.
5. If a planar graph has n vertices then $\alpha(G) \geq n / 6$.

Use the previous result along with the result that $\alpha(G) \chi(G) \geq n$.
6. Every triangle-free planar graph has a vertex of degree ≤ 3 (Use a result about the number of edges and vertices from yesterday).
If a graph with at least 3 vertices is triangle-free, then by a result yesterday $e \leq 2 v-4$, so $\sum_{v} \operatorname{deg}(v)=$ $2 e=4 v-8<4 v$. Thus there must be some vertex with degree ≤ 3.
7. Every triangle-free planar graph is 4-colorable.

Induction. Remove a vertex with degree ≤ 3, color the rest of the graph with 4 colors, then color the remaining vertex.
8. (\star) Find a triangle-free planar graph with 11 vertices that is not 3 -colorable. (Hint: it has 5 -fold rotational symmetry.)
Good luck!

Challenge: Greedy Algorithm

1. For every graph show that there is some ordering of the vertices for which the greedy algorithm will use $\chi(G)$ colors (the minimum).
2. Find a planar graph and an ordering of the vertices for which the greedy algorithm uses 5 or more colors.

Suggested From Rosen

10.8: 5-10, 13, 32, 35

