Chapter 10.8: Graph Coloring

Tuesday, August 11

Summary

- Dual graph: formed by putting a vertex at each face of a graph and connecting vertices if the corresponding faces are adjacent.
- Chromatic number $(\chi(G))$: smallest number of colors required to color each vertex of the graph so that no adjacent vertices have the same color.
- Independence number $(\alpha(G))$: the size of the largest set S of vertices such that no two vertices in S share an edge.
- Greedy algorithm: visit the vertices in random order and color each vertex with the first available color.
- If G is planar then $\chi(G) \leq 4$.

Coloring and Independence

- 1. (\bigstar) Find $\alpha(G)$ and $\chi(G)$ for each of the following:
 - (a) K_n : $\alpha(G) = 1, \chi(G) = n$
 - (b) C_n : $\alpha(G) = \lfloor n/2 \rfloor$, $\chi(G) = 2$ if n is even and 3 if n is odd.
 - (c) P_n : $\alpha(G) = \lceil n/2 \rceil, \ \chi(G) = 2.$
 - (d) $K_{m,n}$: $\alpha(G) = \max(m, n), \chi(G) = 2$.
- 2. What is $\chi(G)$, where G is a tree? $\chi(G) = 2$. Prove by induction.
- 3. (\bigstar) For any graph G with n vertices, $\chi(G) \leq n \alpha(G) + 1$.

Color $\alpha(G)$ of the vertices with 1 of the colors, then each of the other $n - \alpha(G)$ vertices gets a different color: total number of colors is $n - \alpha(G) + 1$.

4. For any graph G with n vertices, $\alpha(G)\chi(G) \geq n$.

Let C_i be the set of vertices given color i. Since all of these vertices must be non-adjacent we know that $|C_i| \le \alpha(G)$ for any i. Therefore for any coloring $n = \sum_i |C_i| \le \sum_i \alpha(G) \le \chi(G)\alpha(G)$.

More Coloring

- 1. For every n, find a 2-colorable graph with n vertices such that every vertex has degree $\geq (n-1)/2$. Make a bipartite graph with an equal number of vertices on both sides (or as equal as possible).
- 2. (\bigstar) If every vertex in a graph G has degree $\leq d$, then G is (d+1)-colorable. Use the greedy algorithm. Any vertex has at most d neighbors so at least 1 color is guaranteed to be available to color that vertex.
- 3. (\bigstar) If all cycles in a graph G have length divisible by $k \geq 2$, then G is k-colorable.

Rough sketch: Assume that all vertices in the graph have degree ≥ 2 . Walk around the graph aimlessly, coloring each vertex you visit with a new color (and starting over at 1 after reaching k). The fact that the length of every cycle is divisible by k means that if you reach the same vertex twice then you will be trying to color it the same color as before, having progressed a multiple of k steps.

Then color all of the vertices of degree 1.

4. Every planar graph is 6-colorable (Hint: induction).

Every planar graph has a vertex of degree ≤ 5 , so after coloring the rest of the graph this vertex will be guaranteed to have a legal coloring. Remove this vertex, find (by inductive assumption) a 6-coloring of the remaining planar graph, then color the last vertex.

5. If a planar graph has n vertices then $\alpha(G) \geq n/6$.

Use the previous result along with the result that $\alpha(G)\chi(G) \geq n$.

6. Every triangle-free planar graph has a vertex of degree ≤ 3 (Use a result about the number of edges and vertices from yesterday).

If a graph with at least 3 vertices is triangle-free, then by a result yesterday $e \le 2v - 4$, so $\sum_{v} deg(v) = 2e = 4v - 8 < 4v$. Thus there must be some vertex with degree ≤ 3 .

7. Every triangle-free planar graph is 4-colorable.

Induction. Remove a vertex with degree ≤ 3 , color the rest of the graph with 4 colors, then color the remaining vertex.

8. (★) Find a triangle-free planar graph with 11 vertices that is not 3-colorable. (Hint: it has 5-fold rotational symmetry.)

Good luck!

Challenge: Greedy Algorithm

- 1. For every graph show that there is some ordering of the vertices for which the greedy algorithm will use $\chi(G)$ colors (the minimum).
- 2. Find a planar graph and an ordering of the vertices for which the greedy algorithm uses 5 or more colors.

Suggested From Rosen

10.8: 5-10, 13, 32, 35