Chapter 10.7: Planar Graphs

Monday, August 10

Summary

- A planar graph can be drawn in the plane so that no edges intersect. Such a drawing is a plane graph.
- Euler's Formula: For a plane graph, v e + r = 2.
- If $v \ge 3$ then $e \le 3v 6$.
- Every planar graph has a vertex of degree ≤ 5 .
- If G is triangle-free and $v \geq 3$ then $e \leq 2v 4$
- Kuratowski's Theorem: a graph is planar if and only if it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

Euler's Formula

1. A connected plane graph has six vertices, each of degree four. Into how many regions does the graph divide the plane?

The graph has $(6 \cdot 4)/2 = 12$ edges total, so using the formula v - e + r = 2 gives 6 - 12 + r = 2, so r = 8. One example of such a graph is the plane graph of the octahedron.

- 2. (\bigstar) Find all five Platonic solids. Each one can be described by gluing regular n-gons together with m polygons to a vertex. For example, a cube is made of squares with 3 squares to a vertex and has 6 faces. Find the number of faces of the other Platonic solids.
 - (a) Tetrahedron: 4 triangles, 3 to a vertex.
 - (b) Octahedron: 8 triangles, 4 to a vertex.
 - (c) Icosahedron: 20 triangles, 5 to a vertex.
 - (d) Cube: 6 squares, 3 to a vertex.
 - (e) Dodecahedron: 12 pentagons, 3 to a vertex.
- 3. (\bigstar) If you have a solid block made of triangles and octagons with 3 shapes to a vertex, what can you say about the relation between the number of triangles and the number of octagons? (One of these shapes is made by slicing the vertices off of a cube.)

We know that v-e+r=2 for the tiling. Each triangle counts as 3/3 vertices, 1 face, and 3/2 edges, and so adds 1/2 to the total. Each octagon counts as 8/3 vertices, 1 face, and 8/2 edges, and so subtracts 1/3 from the total. Thus $\frac{1}{2}T - \frac{1}{3}O = 2$, or 3T - 2O = 12. One option is 4 triangles and 0 octagons (a tetrahedron), and cutting the edges off of a cube gives 8 triangles and 6 octagons.

4. If v - e + r = k for a tiling of some shape, then we can say that the *Euler characteristic* of the shape is k. For example, the Euler characteristic of a sphere is 2. Do some experimentation and find the Euler characteristics of the torus and double torus.

The torus has Euler characteristic 0 (it can be tiled with squares, 4 to a vertex) and the double torus has Euler characteristic -2 (it can be tiled with 8 pentagons, 4 to a vertex).

5. Find two trees with the same number of vertices that are homeomorphic but not isomorphic.

The smallest such trees have 6 vertices each: one central vertex of degree 3 and three chains of lengths 1,1,3 and 1,2,2, respectively.

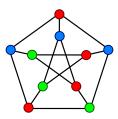
Planar Graphs

1. If a connected graph has n vertices and n+2 edges, then G is planar. For $n \ge 6$, this becomes false if we say n+3 instead of n+2.

 K_5 has 10 edges and 5 vertices while $K_{3,3}$ has 9 edges and 6 vertices. Any connected graph with n vertices containing a subgraph homeomorphic to either of these two must therefore have at least n+3 edges.

 $K_{3,3}$ is an example of a non-planar graph with n vertices and n+3 edges.

2. (\bigstar) Show that the Petersen graph is not planar (find a subgraph homeomorphic to $K_{3,3}$).



Solution on page 725 of Rosen.

3. Find a bipartite graph G that is not planar but does NOT contain a subdivision of $K_{3,3}$. Your graph should have no more than 20 edges.

Add a vertex to the middle of every edge of K_5 . The resulting graph will be bipartite with 20 edges but does not contain $K_{3,3}$ since it is homeomorphic to K_5 .

Challenge

1. Solve the problem that Matt Damon solved in *Godd Will Hunting*: "How many (non-isomorphic) homeomorphically irreducible trees are there on 10 vertices?" A tree is *homeomorphically irreducible* if it has no vertices of degree 2.

There are 10 of them in all...

Suggested From Rosen

10.7: 1-9, 12, 13, 17, 18, 36, 37