Chapter 11.5: Euler and Hamilton Paths Friday, August 7

Summary

- Euler trail/path: A walk that traverses every edge of a graph once.
- Eulerian circuit: An Euler trail that ends at its starting vertex.
- Eulerian path exists iff graph has ≤ 2 vertices of odd degree.
- Hamilton path: A path that passes through every edge of a graph once.
- Hamilton cycle/circuit: A cycle that is a Hamilton path.
- If G is simple with $n \ge 3$ vertices such that $deg(u) + deg(v) \ge n$ for every pair of nonadjacent vertices u, v in G, then G has a Hamilton cycle.
- Euler's Formula for plane graphs: v e + r = 2.

Trails and Circuits

- 1. For which values of n do K_n , C_n , and $K_{m,n}$ have Euler circuits? What about Euler paths? (\bigstar)
- 2. Prove that the dodecahedron is Hamiltonian.
- 3. A *knight's tour* is a a sequence of legal moves on a board by a knight (moves 2 squares horizontally or vertically, then 1 square at a right angle) that visits each square once. Call it *reentrant* if the tour ends at its starting square.
 - (a) Draw graphs that represent the legal moves of the knight on a 3×3 and 3×4 chessboard. (\bigstar)
 - (b) Show that there is a knight's tour on a 3×4 board but not a 3×3 board.
 - (c) Show that if a graph has a Hamilton path then after deleting k vertices, the remaining graph has $\leq k+1$ connected components.
 - (d) Use the previous result to show that there is no knight's tour on a 4×4 chessboard.
- 4. Show that the Petersen graph does not have a Hamilton circuit, but if you delete any vertex (and all incident edges) then the resulting subgraphs does have a Hamilton circuit.

Grid Graphs

- 1. (\bigstar) Count the number of edges in the $k \times l$ grid.
- 2. Count the number of shortest paths between opposite corners of a grid.
- 3. Prove that all grid graphs have a Hamilton path.
- 4. (\bigstar) For what values of k and l does the $k \times l$ grid graph have a Hamilton cycle?
- 5. You have an 8-by-8 chessboard and 31 dominoes. Is it possible to tile the chessboard with the dominoes if you remove a pair of opposite corners from the board? (Look for an ah-ha! proof.)
- 6. A mouse wants to eat a $3 \times 3 \times 3$ block of cheese cubes by eating adjacent blocks one after the other. Is it possible for the mouse to eat the center cube last?

Plane Graphs

- 1. Try to tile the plane with triangles, 5 triangles to a vertex. What happens?
- 2. Try to tile the plane with triangles, 7 triangles to a vertex. Now what happens?

Suggested From Rosen

10.6: 49, 55, 62, 63