Chapter 10.2-10.3: Graph Isomorphism and Connectedness Wednesday, August 5

Summary

- An isomorphism from G = (V, E) to H = (W, F) is a bijection $\varphi : V \to W$ such that $(u, v) \in E$ if and only if $(\varphi(u), \varphi(v)) \in F$.
- \bullet An automorphism is an isomorphism from G to itself.
- A walk is a sequence of edges such that successive edges share a common vertex.
- A path is a walk with no repeated vertices.
- A cycle is a path that ends where it began.
- A trail is a walk with no repeated edges.
- A graph is connected if any two vertices are connected by a path.
- The distance between two vertices is the length of the shortest path connecting them.
- The diameter of a graph is the maximum distance between two vertices.

Isomorphisms

- 1. (\bigstar) Show that C_5 and $\overline{C_5}$ are isomorphic.
 - $\overline{C_5}$ is a five-pointed star, which is the same as a cycle of length 5 under the appropriate isomorphism.
- 2. (\bigstar) Show that C_4 and $\overline{C_4}$ are not isomorphic.
 - $\overline{C_4}$ has only 2 edges but C_4 has 4.
- 3. Show that if G has n vertices and G is isomorphic to \overline{G} then $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$ (Hint: count edges).
 - If they are isomorphic then G and \overline{G} must have the same number of edges, thus the number of possible edges $\binom{n}{2}$ is even. So 2|n(n-1)/2, and therefore 4|n(n-1). Since n and n-1 are relatively prime, this can only happen if 4|n or 4|(n-1).
- 4. (\bigstar) Find a graph G on 4 vertices such that G and \overline{G} are isomorphic.
 - The path of length 3 (P_3) is isomorphic to its complement.
- 5. (\bigstar) How many automorphisms are there on C_n ? K_n ?
 - C_n has 2n automorphisms and K_n has n!.
- 6. Find all nonisomorphic graphs with 4 vertices.
 - There are 11 of them: 1 with 0 edges, 1 with 1, 2 with 2, 3 with 3, 2 with 4, 1 with 5, and 1 with 6.
- 7. (Challenge) Show that the Petersen graph, shown below, has 120 automorphisms.
 - Good luck!

Paths and Connectedness

1. (\bigstar) Find the diameter of $P_n, C_n, K_n, K_{m,n}$. The diameter of P_n is n-1, that of C_n is $\lfloor n/2 \rfloor$, that of K_n is 1, and that of $K_{m,n}$ is 2.

2. If v has odd degree in G then there is some w of odd degree such that v and w are connected by a path.

The Handshake Theorem (the number of vertices with odd degree is even) holds for the connected components of a graph as well as the entire graph. Thus if there is at least one vertex of odd degree in a component C then there must be another as well. Since C is connected, the two vertices are connected by a path.

3. Find all non-isomorphic trees with 6 vertices.

There are 6 of them.

4. Find a graph with n vertices, n-1 edges, and diameter 2.

Make a wheel with one vertex in the center connected to each of the n-1 vertices around the edges.

5. (\bigstar) Count the number of 4-cycles in $K_{m,n}$.

Choose 2 vertices on one side and 2 on the other; any such choice of 4 vertices determines a cycle and any 4-cycle must have 2 vertices on each side. The number of 4-cycles is therefore $\binom{m}{2}\binom{n}{2}$.

6. Prove that $d(x,y) + d(y,z) \ge d(x,z)$ for any vertices $x,y,z \in G$. Find an example of a graph and 3 vertices in the graph where the two sides are not equal.

Just append the shortest path from x to y to the path from y to z to get a walk (not necessarily a path!) from x to z. The length of the shortest path must be shorter than the length of this walk.

Pick the 3 vertices of K_3 : d(x,y) = d(y,z) = d(x,z) = 1, so d(x,y) + d(y,z) > d(x,z).

7. Prove: If every vertex in a graph G has degree at least 2 then then G contains a cycle.

Start at any vertex, and begin walking. Since each vertex has degree at least 2 we will never reach a dead end. Since the number of vertices in G is finite, we will eventually come to the same vertex twice. The part of the path that starts and ends at this vertex makes a cycle.

Suggested From Rosen

10.3: 34-44, 45-46, 53-56, 66

10.4: 19-25, 45, 64