Chapter 10.2-10.3: Graph Isomorphism and Connectedness Wednesday, August 5

Summary

- An isomorphism from $G=(V, E)$ to $H=(W, F)$ is a bijection $\varphi: V \rightarrow W$ such that $(u, v) \in E$ if and only if $(\varphi(u), \varphi(v)) \in F$.
- An automorphism is an isomorphism from G to itself.
- A walk is a sequence of edges such that successive edges share a common vertex.
- A path is a walk with no repeated vertices.
- A cycle is a path that ends where it began.
- A trail is a walk with no repeated edges.
- A graph is connected if any two vertices are connected by a path.
- The distance between two vertices is the length of the shortest path connecting them.
- The diameter of a graph is the maximum distance between two vertices.

Isomorphisms

1. (\star) Show that C_{5} and $\overline{C_{5}}$ are isomorphic.
$\overline{C_{5}}$ is a five-pointed star, which is the same as a cycle of length 5 under the appropriate isomorphism.
2. (\star) Show that C_{4} and $\overline{C_{4}}$ are not isomorphic.
$\overline{C_{4}}$ has only 2 edges but C_{4} has 4 .
3. Show that if G has n vertices and G is isomorphic to \bar{G} then $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$ (Hint: count edges).
If they are isomorphic then G and \bar{G} must have the same number of edges, thus the number of possible edges $\binom{n}{2}$ is even. So $2 \mid n(n-1) / 2$, and therefore $4 \mid n(n-1)$. Since n and $n-1$ are relatively prime, this can only happen if $4 \mid n$ or $4 \mid(n-1)$.
4. ($\boldsymbol{\star}$) Find a graph G on 4 vertices such that G and \bar{G} are isomorphic.

The path of length $3\left(P_{3}\right)$ is isomorphic to its complement.
5. (\star) How many automorphisms are there on C_{n} ? K_{n} ?
C_{n} has $2 n$ automorphisms and K_{n} has n !.
6. Find all nonisomorphic graphs with 4 vertices.

There are 11 of them: 1 with 0 edges, 1 with 1,2 with 2,3 with 3,2 with 4,1 with 5 , and 1 with 6 .
7. (Challenge) Show that the Petersen graph, shown below, has 120 automorphisms.

Good luck!

Paths and Connectedness

1. (\star) Find the diameter of $P_{n}, C_{n}, K_{n}, K_{m, n}$.

The diameter of P_{n} is $n-1$, that of C_{n} is $\lfloor n / 2\rfloor$, that of K_{n} is 1 , and that of $K_{m, n}$ is 2 .
2. If v has odd degree in G then there is some w of odd degree such that v and w are connected by a path.
The Handshake Theorem (the number of vertices with odd degree is even) holds for the connected components of a graph as well as the entire graph. Thus if there is at least one vertex of odd degree in a component C then there must be another as well. Since C is connected, the two vertices are connected by a path.
3. Find all non-isomorphic trees with 6 vertices.

There are 6 of them.
4. Find a graph with n vertices, $n-1$ edges, and diameter 2 .

Make a wheel with one vertex in the center connected to each of the $n-1$ vertices around the edges.
5. (\star) Count the number of 4 -cycles in $K_{m, n}$.

Choose 2 vertices on one side and 2 on the other; any such choice of 4 vertices determines a cycle and any 4 -cycle must have 2 vertices on each side. The number of 4-cycles is therefore $\binom{m}{2}\binom{n}{2}$.
6. Prove that $d(x, y)+d(y, z) \geq d(x, z)$ for any vertices $x, y, z \in G$. Find an example of a graph and 3 vertices in the graph where the two sides are not equal.
Just append the shortest path from x to y to the path from y to z to get a walk (not necesarily a path!) from x to z. The length of the shortest path must be shorter than the length of this walk.
Pick the 3 vertices of $K_{3}: d(x, y)=d(y, z)=d(x, z)=1$, so $d(x, y)+d(y, z)>d(x, z)$.
7. Prove: If every vertex in a graph G has degree at least 2 then then G contains a cycle.

Start at any vertex, and begin walking. Since each vertex has degree at least 2 we will never reach a dead end. Since the number of vertices in G is finite, we will eventually come to the same vertex twice. The part of the path that starts and ends at this vertex makes a cycle.

Suggested From Rosen

10.3: 34-44, 45-46, 53-56, 66
10.4: 19-25, 45, 64

