Summary

- An isomorphism from $G = (V,E)$ to $H = (W,F)$ is a bijection $\varphi : V \rightarrow W$ such that $(u,v) \in E$ if and only if $(\varphi(u),\varphi(v)) \in F$.
- An automorphism is an isomorphism from G to itself.
- A walk is a sequence of edges such that successive edges share a common vertex.
- A path is a walk with no repeated vertices.
- A cycle is a path that ends where it began.
- A trail is a walk with no repeated edges.
- A graph is connected if any two vertices are connected by a path.
- The distance between two vertices is the length of the shortest path connecting them.
- The diameter of a graph is the maximum distance between two vertices.

Isomorphisms

1. (★) Show that C_5 and $\overline{C_5}$ are isomorphic.
 $\overline{C_5}$ is a five-pointed star, which is the same as a cycle of length 5 under the appropriate isomorphism.

2. (★) Show that C_4 and $\overline{C_4}$ are not isomorphic.
 $\overline{C_4}$ has only 2 edges but C_4 has 4.

3. Show that if G has n vertices and G is isomorphic to \overline{G} then $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$ (Hint: count edges).
 If they are isomorphic then G and \overline{G} must have the same number of edges, thus the number of possible edges $\binom{n}{2}$ is even. So $2|n(n-1)/2$, and therefore $4|n(n-1)$. Since n and $n-1$ are relatively prime, this can only happen if $4|n$ or $4|(n-1)$.

4. (★) Find a graph G on 4 vertices such that G and \overline{G} are isomorphic.
 The path of length 3 (P_3) is isomorphic to its complement.

5. (★) How many automorphisms are there on C_n? K_n?
 C_n has $2n$ automorphisms and K_n has $n!$.

6. Find all nonisomorphic graphs with 4 vertices.
 There are 11 of them: 1 with 0 edges, 1 with 1, 2 with 2, 3 with 3, 2 with 4, 1 with 5, and 1 with 6.

7. (Challenge) Show that the Petersen graph, shown below, has 120 automorphisms.
 Good luck!
Paths and Connectedness

1. (⋆) Find the diameter of P_n, C_n, K_n, $K_{m,n}$.

 The diameter of P_n is $n - 1$, that of C_n is $\lceil n/2 \rceil$, that of K_n is 1, and that of $K_{m,n}$ is 2.

2. If v has odd degree in G then there is some w of odd degree such that v and w are connected by a path.

 The Handshake Theorem (the number of vertices with odd degree is even) holds for the connected components of a graph as well as the entire graph. Thus if there is at least one vertex of odd degree in a component C then there must be another as well. Since C is connected, the two vertices are connected by a path.

3. Find all non-isomorphic trees with 6 vertices.

 There are 6 of them.

4. Find a graph with n vertices, $n - 1$ edges, and diameter 2.

 Make a wheel with one vertex in the center connected to each of the $n - 1$ vertices around the edges.

5. (⋆) Count the number of 4-cycles in $K_{m,n}$.

 Choose 2 vertices on one side and 2 on the other; any such choice of 4 vertices determines a cycle and any 4-cycle must have 2 vertices on each side. The number of 4-cycles is therefore $\binom{m}{2} \binom{n}{2}$.

6. Prove that $d(x, y) + d(y, z) \geq d(x, z)$ for any vertices $x, y, z \in G$. Find an example of a graph and 3 vertices in the graph where the two sides are not equal.

 Just append the shortest path from x to y to the path from y to z to get a walk (not necesarily a path) from x to z. The length of the shortest path must be shorter than the length of this walk.

 Pick the 3 vertices of K_3: $d(x, y) = d(y, z) = d(x, z) = 1$, so $d(x, y) + d(y, z) > d(x, z)$.

7. Prove: If every vertex in a graph G has degree at least 2 then then G contains a cycle.

 Start at any vertex, and begin walking. Since each vertex has degree at least 2 we will never reach a dead end. Since the number of vertices in G is finite, we will eventually come to the same vertex twice. The part of the path that starts and ends at this vertex makes a cycle.

Suggested From Rosen

10.3: 34-44, 45-46, 53-56, 66
10.4: 19-25, 45, 64