Chapter 7.4: Expected Value and Variance
 Monday, August 3

Summary

- Covariance of X and Y is $E([X-E(X)][Y-E(Y)])=E(X Y)-E(X) E(Y)$
- Correlation of X and Y is $\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.
- $G=(V, E) . \mathrm{V}=$ set of vertices, $\mathrm{E}=\{(u, v), \ldots\}=$ set of edges.
- Digraph: the direction of the edge matters, $(\mathrm{u}, \mathrm{v})=$ arc from u to v .
- degree of $\mathrm{u}=$ number of neighbors, isolated $=$ degree 0
- $K_{n}=$ complete graph on n vertices, $C_{n}=$ cycle
- bipartite if it can be colored with 2 colors so that neighbors have different colors, or if we can write $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\emptyset$ so that every edge in E has one elt. in V_{1} and one in V_{2}.
- Induced subgraph: choose the vertices; the edges are automatic.
- Complement: \bar{G} has all of the edges that G doesn't.

Covariance/Correlation

1. Flip 3 coins. Let X be the number of heads flipped and let Y be the number of times the sequence $H H$ appears. Find $\operatorname{Cov}(X, Y)$.
2. (\star) Let X be the number of heads in 2 flips of a fair coin, and let Y be the number of tails. Show that the correlation of X and Y is -1 .
3. Show that if $X+Y$ is any constant then the correlation of X and Y is -1 .
4. Show that the correlation of X and Y is equal to the correlation of $(a X+b)$ and Y.
5. Prove that $\operatorname{Cov}(X, Y)^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)$ for any random variables X and Y (This is equivalent to the Cauchy-Schwarz inequality. Hint: Find the a that minimizes $\operatorname{Var}(X-a Y)$ and use the fact that the variance must be at least 0 .)

Graphs

1. If $G=(V, E)$ is a graph, show that $|E| \leq\binom{ n}{2}$.
2. (\star) Show that $|E(G)|+|E(\bar{G})|=\binom{n}{2}$.
3. The number of graphs with n (labeled) vertices is $2^{\binom{n}{2}}$
4. (\star) Let G have n vertices and m edges. How many induced subgraphs are there? How many spanning subgraphs are there?
5. How many spanning subgraphs of K_{n} are there with exactly m edges?
6. Show that if G is bipartite then $|E| \leq\left\lfloor n^{2} / 4\right\rfloor$
7. ($\boldsymbol{\star})$ How many edges does K_{n} have? What about C_{n} ? $K_{m, n}$?
8. For which values of n is K_{n} bipartite? What about C_{n} ?
9. Describe and count the edges of $\overline{K_{n}}, \overline{C_{n}}, \overline{K_{m, n}}$.
10. (\star) Draw a directed graph on the 7 vertices $\{0,1, \ldots, 6\}$ where (u, v) is an edge if and only if $v \equiv 3 u$ $(\bmod 7)$.
11. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree (Hint: pigeon-hole principle)
12. $(\boldsymbol{\star})$ How many triangles does the graph K_{n} contain?
13. (Hard) If G is triangle-free, then $|E(G)| \leq\left\lfloor n^{2} / 4\right\rfloor$ (use inductions in increments of 2 , delete both vertices connected by some edge for the inductive step).

Suggested From Rosen

10.2: 1-5, 7, 19, 21-25, 53-55

