Chapter 7.4: Expected Value and Variance
 Monday, August 3

Summary

- Covariance of X and Y is $E([X-E(X)][Y-E(Y)])=E(X Y)-E(X) E(Y)$
- Correlation of X and Y is $\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.
- $G=(V, E) . \mathrm{V}=$ set of vertices, $\mathrm{E}=\{(u, v), \ldots\}=$ set of edges.
- Digraph: the direction of the edge matters, $(\mathrm{u}, \mathrm{v})=\operatorname{arc}$ from u to v .
- degree of $\mathrm{u}=$ number of neighbors, isolated $=$ degree 0
- $K_{n}=$ complete graph on n vertices, $C_{n}=$ cycle
- bipartite if it can be colored with 2 colors so that neighbors have different colors, or if we can write $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\emptyset$ so that every edge in E has one elt. in V_{1} and one in V_{2}.
- Induced subgraph: choose the vertices; the edges are automatic.
- Complement: \bar{G} has all of the edges that G doesn't.

Covariance/Correlation

1. Flip 3 coins. Let X be the number of heads flipped and let Y be the number of times the sequence $H H$ appears. Find $\operatorname{Cov}(X, Y)$.
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{8}(2 \cdot 1+2 \cdot 1+3 \cdot 2)-(3 / 2)(1 / 2)=10 / 8-3 / 4=1 / 2>0$. These variables are (unsurprisingly) positively correlated.
2. (\star) Let X be the number of heads in 2 flips of a fair coin, and let Y be the number of tails. Show that the correlation of X and Y is -1 .
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{4}(1 \cdot 1+1 \cdot 1)-1 \cdot 1=-1 / 2$. Then $\operatorname{Var}(X)=\operatorname{Var}(Y)=1 / 2$, so $\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=-1$. See a generalization below.
3. Show that if $X+Y$ is any constant then the correlation of X and Y is -1 .

Say $X=k-Y$, then $\operatorname{Cov}(X, Y)=\operatorname{Cov}(k-Y, Y)=-\operatorname{Cov}(Y, Y)=-\operatorname{Var}(Y)$. Then $\operatorname{Var}(X)=\operatorname{Var}(Y)$, so $\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=-\operatorname{Var}(Y) / \operatorname{Var}(Y)=-1$.
4. Show that the correlation of X and Y is equal to the correlation of $(a X+b)$ and Y.

This follows from the fact that $\operatorname{Cov}(a X+b, Y)=a \operatorname{Cov}(X, Y)$ and $\sqrt{\operatorname{Var}(a X+b)}=a \sqrt{\operatorname{Var}(X)}$. Both of these quantities scale up by a and the scaling cancels out.
5. Prove that $\operatorname{Cov}(X, Y)^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)$ for any random variables X and Y (This is equivalent to the Cauchy-Schwarz inequality. Hint: Find the a that minimizes $\operatorname{Var}(X-a Y)$ and use the fact that the variance must be at least 0 .)
$0 \leq \operatorname{Var}(X-a Y)=\operatorname{Var}(X)+a^{2} \operatorname{Var}(Y)-2 a \operatorname{Cov}(X, Y)$. This is minimized when $a=\operatorname{Cov}(X, Y) / \operatorname{Var}(Y)$, giving

$$
\begin{aligned}
0 & \leq \operatorname{Var}(X)+\operatorname{Cov}(X, Y)^{2} \operatorname{Var}(Y) / \operatorname{Var}(Y)^{2}-2 \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)} \operatorname{Var}(Y) \\
0 & \leq \operatorname{Var}(X)-\frac{\operatorname{Cov}(X, Y)^{2}}{\operatorname{Var}(Y)} \\
\frac{\operatorname{Cov}(X, Y)^{2}}{\operatorname{Var}(Y)} & \leq \operatorname{Var}(X) \\
\operatorname{Cov}(X, Y)^{2} & \leq \operatorname{Var}(X) \operatorname{Var}(Y)
\end{aligned}
$$

Graphs

1. If $G=(V, E)$ is a graph, show that $|E| \leq\binom{ n}{2}$.

That's how many distinct pairs of vertices there are.
2. (\star) Show that $|E(G)|+|E(\bar{G})|=\binom{n}{2}$.

Any of those possible vertices that aren't in $E(G)$ are in $E(\bar{G})$ and vice versa.
3. The number of graphs with n (labeled) vertices is $2^{\binom{n}{2}}$

After we fix the n vertices, the number of graphs is equal to the number of subsets of possible edges, which is 2 to the number of edges, which is $2\binom{n}{2}$.
4. $(\boldsymbol{\star})$ Let G have n vertices and m edges. How many induced subgraphs are there? How many spanning subgraphs are there?
There are 2^{n} induced subgraphs (all subsets of vertices) and 2^{m} spanning subgraphs (all subsets of edges).
5. How many spanning subgraphs of K_{n} are there with exactly m edges?
$\binom{n}{m}$, since we fix all of the vertices and pick m edges.
6. Show that if G is bipartite then $|E| \leq\left\lfloor n^{2} / 4\right\rfloor$
$K_{m, o}$ has mo edges in general, and this number is maximized when o and m are as close as possible. If n is even then $(n / 2)(n / 2)=n^{2} / 4$, and if n is odd then we have $(n+1) / 2 \cdot(n-1) / 2=\left(n^{2}-1\right) / 4<n^{2} / 4$.
7. (\star) How many edges does K_{n} have? What about C_{n} ? $K_{m, n}$?
K_{n} has $\binom{n}{2}$ edges, C_{n} has $n, K_{m, n}$ has mn.
8. For which values of n is K_{n} bipartite? What about C_{n} ?
K_{n} is bipartite only when $n \leq 2 . C_{n}$ is bipartite precisely when n is even.
9. Describe and count the edges of $\overline{K_{n}}, \overline{C_{n}}, \overline{K_{m, n}}$.

Subtract the number of edges each of these graphs have from $\binom{n}{2}$ to get the number of edges in the complements.
10. (\star) Draw a directed graph on the 7 vertices $\{0,1, \ldots, 6\}$ where (u, v) is an edge if and only if $v \equiv 3 u$ $(\bmod 7)$.
$0 \rightarrow 0,1 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 1$.
11. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree (Hint: pigeon-hole principle)
Say the graph has n vertices with $n \geq 2$. The degree number of a vertex can be anywhere from 0 to $\mathrm{n}-1 \ldots \mathrm{n}$ options in all. But if one vertex has degree 0 then no vertex can have degree $n-1$, because that would require it to share an edge with the degree 0 vertex. There are therefore at least ($\mathrm{n}-1$) vertices with degrees between 1 and (n-2), so by the Pigeonhole principle two of them must have the same degree.
12. (\star) How many triangles does the graph K_{n} contain?
$\binom{n}{3}$, since any three vertices make a triangle in K_{n}.
13. (Hard) If G is triangle-free, then $|E(G)| \leq\left\lfloor n^{2} / 4\right\rfloor$ (use inductions in increments of 2, delete both vertices connected by some edge for the inductive step).
Base case: the inequality holds for $n=1$ and $n=2$.
Inductive step: suppose the inequality holds for n, and consider a graph with $n+2$ vertices. Pick any edge (u, v). Because G is triangle-free, u and v can have no common neighbors (otherwise (u, v, w, u) would make a triangle), so each of the n remaining vertices is connected to at most one of u and v. Therefore if we delete u, v, and all edges connected to either of them, we will have deleted at most $n+1$ edges.
The remaining graph has n vertices and by inductive hypothesis has at most $n^{2} / 4$ edges, so when we add u and v back in we get that the graph G has at most $\frac{n^{2}}{4}+(n+1)=\frac{n^{2}+4 n+4}{4}=\frac{(n+2)^{2}}{4}$ edges. The proof by induction is complete.

Suggested From Rosen

10.2: 1-5, 7, 19, 21-25, 53-55

