
Chapter 7.4: Expected Value and Variance
Monday, August 3

Summary

• Covariance of X and Y is E([X − E(X)][Y − E(Y )]) = E(XY )− E(X)E(Y )

• Correlation of X and Y is Cov(X,Y )√
V ar(X)V ar(Y )

.

• G = (V,E). V = set of vertices, E = {(u, v), . . .} = set of edges.

• Digraph: the direction of the edge matters, (u,v) = arc from u to v.

• degree of u = number of neighbors, isolated = degree 0

• Kn = complete graph on n vertices, Cn = cycle

• bipartite if it can be colored with 2 colors so that neighbors have different colors, or if we can write
V = V1 ∪ V2 with V1 ∩ V2 = ∅ so that every edge in E has one elt. in V1 and one in V2.

• Induced subgraph: choose the vertices; the edges are automatic.

• Complement: G has all of the edges that G doesn’t.

Covariance/Correlation

1. Flip 3 coins. Let X be the number of heads flipped and let Y be the number of times the sequence
HH appears. Find Cov(X,Y ).

Cov(X,Y ) = E(XY )−E(X)E(Y ) = 1
8 (2 · 1 + 2 · 1 + 3 · 2)− (3/2)(1/2) = 10/8− 3/4 = 1/2 > 0. These

variables are (unsurprisingly) positively correlated.

2. (F) Let X be the number of heads in 2 flips of a fair coin, and let Y be the number of tails. Show
that the correlation of X and Y is -1.

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 1
4 (1 · 1 + 1 · 1)− 1 · 1 = −1/2. Then V ar(X) = V ar(Y ) = 1/2,

so Cov(X,Y )/
√

V ar(X)V ar(Y ) = −1. See a generalization below.

3. Show that if X + Y is any constant then the correlation of X and Y is -1.

Say X = k−Y , then Cov(X,Y ) = Cov(k−Y, Y ) = −Cov(Y, Y ) = −V ar(Y ). Then V ar(X) = V ar(Y ),
so Cov(X,Y )/

√
V ar(X)V ar(Y ) = −V ar(Y )/V ar(Y ) = −1.

4. Show that the correlation of X and Y is equal to the correlation of (aX + b) and Y .

This follows from the fact that Cov(aX + b, Y ) = aCov(X,Y ) and
√
V ar(aX + b) = a

√
V ar(X).

Both of these quantities scale up by a and the scaling cancels out.

5. Prove that Cov(X,Y )2 ≤ V ar(X)V ar(Y ) for any random variables X and Y (This is equivalent to
the Cauchy-Schwarz inequality. Hint: Find the a that minimizes V ar(X − aY ) and use the fact that
the variance must be at least 0.)
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0 ≤ V ar(X−aY ) = V ar(X)+a2V ar(Y )−2aCov(X,Y ). This is minimized when a = Cov(X,Y )/V ar(Y ),
giving

0 ≤ V ar(X) + Cov(X,Y )2V ar(Y )/V ar(Y )2 − 2
Cov(X,Y )

V ar(Y )
V ar(Y )

0 ≤ V ar(X)− Cov(X,Y )2

V ar(Y )

Cov(X,Y )2

V ar(Y )
≤ V ar(X)

Cov(X,Y )2 ≤ V ar(X)V ar(Y )
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Graphs

1. If G = (V,E) is a graph, show that |E| ≤
(
n
2

)
.

That’s how many distinct pairs of vertices there are.

2. (F) Show that |E(G)|+ |E(G)| =
(
n
2

)
.

Any of those possible vertices that aren’t in E(G) are in E(G) and vice versa.

3. The number of graphs with n (labeled) vertices is 2(n
2)

After we fix the n vertices, the number of graphs is equal to the number of subsets of possible edges,

which is 2 to the number of edges, which is 2(n
2).

4. (F) Let G have n vertices and m edges. How many induced subgraphs are there? How many spanning
subgraphs are there?

There are 2n induced subgraphs (all subsets of vertices) and 2m spanning subgraphs (all subsets of
edges).

5. How many spanning subgraphs of Kn are there with exactly m edges?(
n

m

)
, since we fix all of the vertices and pick m edges.

6. Show that if G is bipartite then |E| ≤ bn2/4c
Km,o has mo edges in general, and this number is maximized when o and m are as close as possible. If
n is even then (n/2)(n/2) = n2/4, and if n is odd then we have (n+1)/2·(n−1)/2 = (n2−1)/4 < n2/4.

7. (F) How many edges does Kn have? What about Cn? Km,n?

Kn has

(
n

2

)
edges, Cn has n, Km,n has mn.

8. For which values of n is Kn bipartite? What about Cn?

Kn is bipartite only when n ≤ 2. Cn is bipartite precisely when n is even.

9. Describe and count the edges of Kn, Cn,Km,n.

Subtract the number of edges each of these graphs have from
(
n
2

)
to get the number of edges in the

complements.

10. (F) Draw a directed graph on the 7 vertices {0, 1, . . . , 6} where (u, v) is an edge if and only if v ≡ 3u
(mod 7).

0→ 0, 1→ 3→ 2→ 6→ 4→ 5→ 1.

11. Show that in a simple graph with at least two vertices there must be two vertices that have the same
degree (Hint: pigeon-hole principle)

Say the graph has n vertices with n ≥ 2. The degree number of a vertex can be anywhere from 0 to
n-1. . . n options in all. But if one vertex has degree 0 then no vertex can have degree n − 1, because
that would require it to share an edge with the degree 0 vertex. There are therefore at least (n-1)
vertices with degrees between 1 and (n-2), so by the Pigeonhole principle two of them must have the
same degree.

12. (F) How many triangles does the graph Kn contain?(
n
3

)
, since any three vertices make a triangle in Kn.
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13. (Hard) If G is triangle-free, then |E(G)| ≤ bn2/4c (use inductions in increments of 2, delete both
vertices connected by some edge for the inductive step).

Base case: the inequality holds for n = 1 and n = 2.

Inductive step: suppose the inequality holds for n, and consider a graph with n + 2 vertices. Pick any
edge (u, v). Because G is triangle-free, u and v can have no common neighbors (otherwise (u, v, w, u)
would make a triangle), so each of the n remaining vertices is connected to at most one of u and v.
Therefore if we delete u, v, and all edges connected to either of them, we will have deleted at most
n + 1 edges.

The remaining graph has n vertices and by inductive hypothesis has at most n2/4 edges, so when we

add u and v back in we get that the graph G has at most n2

4 + (n+ 1) = n2+4n+4
4 = (n+2)2

4 edges. The
proof by induction is complete.

Suggested From Rosen

10.2: 1-5, 7, 19, 21-25, 53-55

4


