Chapter 7.4: Expected Value and Variance Monday, August 3

Summary

- Indictator Variables: $I_E(s) = \begin{cases} 1 & s \in E \\ 0 & s \notin E \end{cases}$
- Variance: $Var(X) = E([X E(X)]^2) = E(X^2) E(X)^2$
- If X and Y are independent then Var(X + Y) = Var(X) + Var(Y)
- If X_1, \ldots, X_n are pairwise independent then $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$.
- $Var(aX + b) = a^2 \cdot Var(X)$.
- Markov's Inequality: If X is non-negative then $p(X \ge a) \le E(X)/a$.
- Chebyshev's Inequality: $p(|X E(X)| \ge r) \le Var(X)/r^2$
- Covariance: Cov(X,Y) = E((X E(X))(Y E(Y))) = E(XY) E(X)E(Y)
- $\bullet \ Cov(X,Y) = Cov(Y,X), \ Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z)$
- E and F are positively correlated if $p(E \cap F) > p(E)p(F)$.

Variance

- 1. (\bigstar) If X is the sum of a rolled pair of dice, what is Var(X)?
- 2. (\bigstar) If a coin with a 25% chance of landing on heads and X is the number of heads that result from 50 flips of the coin, what is Var(X)?
- 3. If E is some event, what is $Var(I_E)$?
- 4. Prove by induction: If X_1, \ldots, X_n are mutually independent random variables, prove by induction that $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$.
- 5. Why does induction not work if the variables are only pairwise independent?

Chebyshev's Inequality

- 1. (★) If a fair coin is flipped 100 times, use Chebyshev's inequality to bound the probability of getting at least 55 or at most 45 heads.
- 2. Bound the probability of getting at least 65 or at most 35 heads.
- 3. Prove: if you flip N fair coins and X_N is the number of heads, then $\lim_{n\to\infty} p(|X-N/2| \ge \epsilon N) = 0$ for any $\epsilon > 0$.
- 4. Prove: If X_1, X_2, \ldots are independent identically distributed (i.i.d.) random variables with finite variance and expected value μ , and $\mu_n = \frac{1}{n} \sum_{i=1}^n X_i$ (the average of the first n variables), then $\lim_{n\to\infty} p(|\mu_n \mu| > \epsilon) = 0$ for any $\epsilon > 0$.

Covariance

- 1. Show that if k is any constant (or more precisely, a random variable that always takes on the value k) then Cov(k, X) = 0.
- 2. (\bigstar) Show that $Cov(aX + b, Y) = a \cdot Cov(X, Y)$.
- 3. If p(E) = .6 and p(F) = .8, what can we say about the correlation of E and F?
- 4. (\bigstar) Flip 100 coins and let X be the number of times HT appears. Find Var(X).
- 5. Flip 100 coins. Let X be the number of times HHH appears and let Y be the number of times HHT appears. Find Cov(X,Y).
- 6. Prove that if P(E|F) > P(E) then $P(E|\overline{F}) < P(E)$ (in other words, if E and F are positively correlated then E and \overline{F} are negatively correlated).