Chapter 7.4: Expected Value and Variance
 Monday, August 3

Summary

- Indictator Variables: $I_{E}(s)= \begin{cases}1 & s \in E \\ 0 & s \notin E\end{cases}$
- Variance: $\operatorname{Var}(X)=E\left([X-E(X)]^{2}\right)=E\left(X^{2}\right)-E(X)^{2}$
- If X and Y are independent then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
- If X_{1}, \ldots, X_{n} are pairwise independent then $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$.
- $\operatorname{Var}(a X+b)=a^{2} \cdot \operatorname{Var}(X)$.
- Markov's Inequality: If X is non-negative then $p(X \geq a) \leq E(X) / a$.
- Chebyshev's Inequality: $p(|X-E(X)| \geq r) \leq \operatorname{Var}(X) / r^{2}$
- Covariance: $\operatorname{Cov}(X, Y)=E((X-E(X))(Y-E(Y)))=E(X Y)-E(X) E(Y)$
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X), \operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$
- E and F are positively correlated if $p(E \cap F)>p(E) p(F)$.

Variance

1. (\star) If X is the sum of a rolled pair of dice, what is $\operatorname{Var}(X)$?

Let D_{1} and D_{2} be the separate dice rolled. Then $\operatorname{Var}(X)=\operatorname{Var}\left(D_{1}+D_{2}\right)=\operatorname{Var}\left(D_{1}\right)+\operatorname{Var}\left(D_{2}\right)$ since the two rolls are independent. So we just have to compute the variance of a single roll of the die:
(a) Method 1: $\operatorname{Var}\left(D_{1}\right)=E\left(D_{1}-3.5\right)^{2}=\frac{1}{6}\left((-2.5)^{2}+(-1.5)^{2}+(-.5)^{2}+.5^{2}+1.5^{2}+2.5^{2}\right)=35 / 12$.
(b) Method 2: $\operatorname{Var}\left(D_{1}\right)=E\left(D_{1}^{2}\right)-E\left(D_{1}\right)^{2}=\frac{1}{6} 1+4+9+16+25+36-12.25=35 / 12$.

So the variance of X is $2 \cdot(35 / 12)=35 / 6$.
2. (\star) If a coin with a 25% chance of landing on heads and X is the number of heads that result from 50 flips of the coin, what is $\operatorname{Var}(X)$?
The variance of a single flip is $p(1-p)=(1 / 4)(3 / 4)=3 / 16$. Then since the 50 flips are independent, the variance is $50 \cdot(3 / 16)=75 / 8$.
3. If E is some event, what is $\operatorname{Var}\left(I_{E}\right)$?
$\operatorname{Var}\left(I_{E}\right)=E\left(I_{E}^{2}\right)-E\left(I_{E}\right)^{2}=E\left(I_{E}\right)-E\left(I_{E}\right)^{2}=p(E)-p(E)^{2}=p(E)(1-p(E))$
4. Prove by induction: If X_{1}, \ldots, X_{n} are mutually independent random variables, prove by induction that $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$.
Base case: If X and Y are independent then the identity $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ has already been established.

Inductive step: Suppose that $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$. Then

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n+1} X_{i}\right) & =\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}+X_{n+1}\right) \\
& =\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)+\operatorname{Var}\left(X_{n+1}\right. \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(X_{n+1}\right. \\
& =\sum_{i=1}^{n+1} \operatorname{Var}\left(X_{i}\right)
\end{aligned}
$$

Thus the formula holds for all $n \geq 2$ by induction. The step from the first line to the second comes from the fact that the variables are mutually independent (and so $\sum_{i=1}^{n} X_{i}$ and X_{n+1} are independent), and the next step comes from the inductive hypothesis.
5. Why does induction not work if the variables are only pairwise independent?

If X, Y, and Z are only pairwise independent it is not necessarily true that $X+Y$ and Z are independent, and so we can't say automatically that $\operatorname{Var}(X+Y+Z)=\operatorname{Var}(X+Y)+\operatorname{Var}(Z)$.

Chebyshev's Inequality

1. (\star) If a fair coin is flipped 100 times, use Chebyshev's inequality to bound the probability of getting at least 55 or at most 45 heads.
The variance of a single flip is $1 / 4$, so the variance of 100 flips is 25 . Therefore $p(|X-50| \geq 5) \leq$ $25 / 5^{2}=1$, which is not a very helpful bound because the probability of any event is at most 1 .
2. Bound the probability of getting at least 65 or at most 35 heads.
$p(|X-50| \geq 15) \leq 25 / 15^{2}=1 / 9$, so there is at least an $8 / 9$ chance that 100 flips will get between 36 and 64 heads.
3. Prove: if you flip N fair coins and X_{N} is the number of heads, then $\lim _{n \rightarrow \infty} p(|X-N / 2| \geq \epsilon N)=0$ for any $\epsilon>0$.
For any N and $\epsilon, p\left(\left|X_{N}-N / 2\right| \geq \epsilon N\right) \leq \frac{N / 4}{\epsilon^{2} N^{2}}=\frac{1 / \epsilon^{2}}{4 N}$. For any fixed ϵ, this quantity goes to 0 as $N \rightarrow \infty$.
4. Prove: If X_{1}, X_{2}, \ldots are independent identically distributed (i.i.d.) random variables with finite variance and expected value μ, and $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ (the average of the first n variables), then $\lim _{n \rightarrow \infty} p\left(\left|\mu_{n}-\mu\right|>\epsilon\right)=0$ for any $\epsilon>0$.
Very similar to the previous proof: $p\left(\left|\mu_{n}-\mu\right|>\epsilon\right)=p\left(\left|N \mu_{n}-N \mu\right|>N \epsilon\right) \leq N \cdot \operatorname{Var}\left(X_{1}\right) /(N \epsilon)^{2}=$ $\frac{\operatorname{Var}\left(X_{1}\right) / \epsilon^{2}}{N}$, which approaches 0 for any fixed ϵ as $N \rightarrow \infty$.

Covariance

1. Show that if k is any constant (or more precisely, a random variable that always takes on the value k) then $\operatorname{Cov}(k, X)=0$.
$\operatorname{Cov}(k, X)=E(k X)-E(k) E(X)=k E(X)-k E(X)=0$.
2. (\star) Show that $\operatorname{Cov}(a X+b, Y)=a \cdot \operatorname{Cov}(X, Y)$.
$\operatorname{Cov}(a X+b, Y)=E(a X Y+b Y)-E(a X+b) E(Y)=a E(X Y)+b E(Y)-a E(X) E(Y)-b E(Y)=$ $a E(X Y)-a E(X) E(Y)=a \cdot \operatorname{Cov}(X, Y)$.
3. If $p(E)=.6$ and $p(F)=.8$, what can we say about the correlation of E and F ?

Nothing.
4. (\star) Flip 100 coins and let X be the number of times $H T$ appears. Find $\operatorname{Var}(X)$.

Let X_{i} be the event that the string $H T$ appears in the i-th and (i+1)-th spots. Then we write $X=X_{1}+X_{2}+\cdots+X_{99}$, and expand $\operatorname{Var}(X)$ in terms of covariance:

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Cov}\left(\sum_{i=1}^{99} X_{i}, \sum_{i=1}^{99} X_{i}\right) \\
& =\sum_{i=1}^{99} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

If $j \geq i+2$ or $i \geq j+2$, the random variables X_{i} and X_{j} are independent because the sequences of flips do not overlap. Thus the covariance is non-zero only if $i-1 \leq j \leq i+1$. Therefore

$$
\left.\operatorname{Var}(X)=\sum_{i=1}^{99} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{98} \operatorname{Cov}\left(X_{i}, X_{i+1}\right)\right)
$$

For the first sum, the variances are identical and equal to $(1 / 4)(3 / 4)=3 / 16$. Each term in the second sum is equal to $p(H T-\cap-H T)-p(H T-) p(-H T)=0-(1 / 4)(1 / 4)=-1 / 16$ (Note that the probability of $X_{1}=1$ and $X_{2}=1$ happening simultaneously is zero). The variance is therefore $99 \cdot(3 / 16)-2 \cdot 98 \cdot(-1 / 16)=101 / 16=6.3125$.
The expected number of $H T$ sequences is $99 / 4=24.75$.
5. Flip 100 coins. Let X be the number of times $H H H$ appears and let Y be the number of times $H H T$ appears. Find $\operatorname{Cov}(X, Y)$.
Write $X=X_{1}+X_{2}+\cdots+X_{98}$ and $Y=Y_{1}+\cdots Y_{98}$ as a sum of indicator variables. Then using the fact that X_{i} and Y_{j} are independent if $|i-j| \geq 3$ (the flips do not overlap), we get

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}\left(\sum_{i} X_{i}, \sum_{j} Y_{j}\right) \\
& =\sum_{i, j} \operatorname{Cov}\left(X_{i}, Y_{j}\right) \\
& =\sum_{i=1}^{96} \operatorname{Cov}\left(X_{i}, Y_{i+2}\right)+\sum_{i=1}^{97} \operatorname{Cov}\left(X_{i}, Y_{i+1}\right)+\sum_{i=1}^{98} \operatorname{Cov}\left(X_{i}, Y_{i}\right)+\sum_{i=2}^{98} \operatorname{Cov}\left(X_{i}, Y_{i-1}\right)+\sum_{i=3}^{98} \operatorname{Cov}\left(X_{i}, Y_{i-2}\right) \\
& =96 \cdot \operatorname{Cov}\left(X_{1}, Y_{3}\right)+97 \cdot \operatorname{Cov}\left(X_{1}, Y_{2}\right)+98 \cdot \operatorname{Cov}\left(X_{1}, Y_{1}\right)+97 \cdot \operatorname{Cov}\left(X_{2}, Y_{1}\right)+96 \cdot \operatorname{Cov}\left(X_{3}, Y_{1}\right)
\end{aligned}
$$

Since these are indicator variables, we know that $\operatorname{Cov}\left(X_{i}, Y_{j}\right)=E\left(X_{i} Y_{j}\right)-E\left(X_{i}\right) E\left(Y_{j}\right)=P\left(X_{i} \cap\right.$ $\left.Y_{j}\right)-P\left(X_{i}\right) P\left(Y_{j}\right)=P\left(X_{i} \cap Y_{j}\right)-1 / 64$ (since X_{i} and Y_{j} are both specific three-coin sequences).

The probability of Y_{1} occurring at the same time as X_{1}, X_{2}, or X_{3} is zero. The probability of Y_{2} occurring at the same time as X_{1} is $1 / 16$, and the probability of Y_{3} occurring at the same time as X_{1} is $1 / 32$. The covariance is therefore
$\operatorname{Cov}(X, Y)=96 \cdot(1 / 32-1 / 64)+97 \cdot(1 / 16-1 / 64)+98 \cdot(-1 / 64)+97 \cdot(-1 / 64)+96 \cdot(-1 / 64)=1.5$
6. Prove that if $P(E \mid F) \geq P(E)$ then $P(E \mid \bar{F})<P(E)$ (in other words, if E and F are positively correlated then E and \bar{F} are negatively correlated).

$$
\begin{aligned}
P(E) & =P(E \mid F) P(F)+P(E \mid \bar{F}) P(\bar{F}) \\
& >P(E) P(F)+P(E \mid \bar{F}) P(\bar{F}) \\
P(E)(1-P(F)) & >P(E \mid \bar{F}) P(\bar{F}) \\
P(E) P(\bar{F}) & >P(E \mid \bar{F}) P(\bar{F}) \\
P(E) & >P(E \mid \bar{F})
\end{aligned}
$$

