Chapter 7.4: Expected Value and Variance Monday, August 3

Summary

- Indictator Variables: $I_E(s) = \begin{cases} 1 & s \in E \\ 0 & s \notin E \end{cases}$
- Variance: $Var(X) = E([X E(X)]^2) = E(X^2) E(X)^2$
- If X and Y are independent then Var(X+Y) = Var(X) + Var(Y)
- If X_1, \ldots, X_n are pairwise independent then $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$.
- $Var(aX + b) = a^2 \cdot Var(X)$.
- Markov's Inequality: If X is non-negative then $p(X \ge a) \le E(X)/a$.
- Chebyshev's Inequality: $p(|X E(X)| \ge r) \le Var(X)/r^2$
- Covariance: Cov(X,Y) = E((X E(X))(Y E(Y))) = E(XY) E(X)E(Y)
- Cov(X,Y) = Cov(Y,X), Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z)
- E and F are positively correlated if $p(E \cap F) > p(E)p(F)$.

Variance

1. (\bigstar) If X is the sum of a rolled pair of dice, what is Var(X)?

Let D_1 and D_2 be the separate dice rolled. Then $Var(X) = Var(D_1 + D_2) = Var(D_1) + Var(D_2)$ since the two rolls are independent. So we just have to compute the variance of a single roll of the die:

- (a) Method 1: $Var(D_1) = E(D_1 3.5)^2 = \frac{1}{6}((-2.5)^2 + (-1.5)^2 + (-.5)^2 + .5^2 + 1.5^2 + 2.5^2) = 35/12.$
- (b) Method 2: $Var(D_1) = E(D_1^2) E(D_1)^2 = \frac{1}{6}1 + 4 + 9 + 16 + 25 + 36 12.25 = 35/12.$

So the variance of X is $2 \cdot (35/12) = 35/6$.

2. (\bigstar) If a coin with a 25% chance of landing on heads and X is the number of heads that result from 50 flips of the coin, what is Var(X)?

The variance of a single flip is p(1-p) = (1/4)(3/4) = 3/16. Then since the 50 flips are independent, the variance is $50 \cdot (3/16) = 75/8$.

3. If E is some event, what is $Var(I_E)$?

$$Var(I_E) = E(I_E^2) - E(I_E)^2 = E(I_E) - E(I_E)^2 = p(E) - p(E)^2 = p(E)(1 - p(E))^2$$

4. Prove by induction: If X_1, \ldots, X_n are mutually independent random variables, prove by induction that $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$.

1

Base case: If X and Y are independent then the identity Var(X+Y) = Var(X) + Var(Y) has already been established.

Inductive step: Suppose that $Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$. Then

$$Var(\sum_{i=1}^{n+1} X_i) = Var(\sum_{i=1}^{n} X_i + X_{n+1})$$

$$= Var(\sum_{i=1}^{n} X_i) + Var(X_{n+1})$$

$$= \sum_{i=1}^{n} Var(X_i) + Var(X_{n+1})$$

$$= \sum_{i=1}^{n+1} Var(X_i)$$

Thus the formula holds for all $n \ge 2$ by induction. The step from the first line to the second comes from the fact that the variables are mutually independent (and so $\sum_{i=1}^{n} X_i$ and X_{n+1} are independent), and the next step comes from the inductive hypothesis.

5. Why does induction not work if the variables are only pairwise independent? If X, Y, and Z are only pairwise independent it is not necessarily true that X+Y and Z are independent, and so we can't say automatically that Var(X+Y+Z) = Var(X+Y) + Var(Z).

Chebyshev's Inequality

- 1. (\bigstar) If a fair coin is flipped 100 times, use Chebyshev's inequality to bound the probability of getting at least 55 or at most 45 heads.
 - The variance of a single flip is 1/4, so the variance of 100 flips is 25. Therefore $p(|X-50| \ge 5) \le 25/5^2 = 1$, which is not a very helpful bound because the probability of *any* event is at most 1.
- 2. Bound the probability of getting at least 65 or at most 35 heads. $p(|X-50| \ge 15) \le 25/15^2 = 1/9$, so there is at least an 8/9 chance that 100 flips will get between 36 and 64 heads.
- 3. Prove: if you flip N fair coins and X_N is the number of heads, then $\lim_{n\to\infty} p(|X-N/2| \ge \epsilon N) = 0$ for any $\epsilon > 0$.
 - For any N and ϵ , $p(|X_N N/2| \ge \epsilon N) \le \frac{N/4}{\epsilon^2 N^2} = \frac{1/\epsilon^2}{4N}$. For any fixed ϵ , this quantity goes to 0 as $N \to \infty$.
- 4. Prove: If X_1, X_2, \ldots are independent identically distributed (i.i.d.) random variables with finite variance and expected value μ , and $\mu_n = \frac{1}{n} \sum_{i=1}^n X_i$ (the average of the first n variables), then $\lim_{n\to\infty} p(|\mu_n \mu| > \epsilon) = 0$ for any $\epsilon > 0$.
 - Very similar to the previous proof: $p(|\mu_n \mu| > \epsilon) = p(|N\mu_n N\mu| > N\epsilon) \le N \cdot Var(X_1)/(N\epsilon)^2 = \frac{Var(X_1)/\epsilon^2}{N}$, which approaches 0 for any fixed ϵ as $N \to \infty$.

Covariance

1. Show that if k is any constant (or more precisely, a random variable that always takes on the value k) then Cov(k, X) = 0.

$$Cov(k, X) = E(kX) - E(k)E(X) = kE(X) - kE(X) = 0.$$

- 2. (\bigstar) Show that $Cov(aX + b, Y) = a \cdot Cov(X, Y)$. $Cov(aX + b, Y) = E(aXY + bY) E(aX + b)E(Y) = aE(XY) + bE(Y) aE(X)E(Y) bE(Y) = aE(XY) aE(X)E(Y) = a \cdot Cov(X, Y).$
- 3. If p(E) = .6 and p(F) = .8, what can we say about the correlation of E and F? Nothing.
- 4. (\bigstar) Flip 100 coins and let X be the number of times HT appears. Find Var(X).

Let X_i be the event that the string HT appears in the i-th and (i+1)-th spots. Then we write $X = X_1 + X_2 + \cdots + X_{99}$, and expand Var(X) in terms of covariance:

$$Var(X) = Cov(\sum_{i=1}^{99} X_i, \sum_{i=1}^{99} X_i)$$

$$= \sum_{i=1}^{99} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

If $j \ge i + 2$ or $i \ge j + 2$, the random variables X_i and X_j are independent because the sequences of flips do not overlap. Thus the covariance is non-zero only if $i - 1 \le j \le i + 1$. Therefore

$$Var(X) = \sum_{i=1}^{99} Var(X_i) + 2\sum_{i=1}^{98} Cov(X_i, X_{i+1}))$$

For the first sum, the variances are identical and equal to (1/4)(3/4) = 3/16. Each term in the second sum is equal to $p(HT - \cap - HT) - p(HT -)p(-HT) = 0 - (1/4)(1/4) = -1/16$ (Note that the probability of $X_1 = 1$ and $X_2 = 1$ happening simultaneously is zero). The variance is therefore $99 \cdot (3/16) - 2 \cdot 98 \cdot (-1/16) = 101/16 = 6.3125$.

The expected number of HT sequences is 99/4 = 24.75.

5. Flip 100 coins. Let X be the number of times HHH appears and let Y be the number of times HHT appears. Find Cov(X,Y).

Write $X = X_1 + X_2 + \cdots + X_{98}$ and $Y = Y_1 + \cdots + Y_{98}$ as a sum of indicator variables. Then using the fact that X_i and Y_j are independent if $|i - j| \ge 3$ (the flips do not overlap), we get

$$\begin{split} Cov(X,Y) &= Cov(\sum_{i} X_{i}, \sum_{j} Y_{j}) \\ &= \sum_{i,j} Cov(X_{i}, Y_{j}) \\ &= \sum_{i=1}^{96} Cov(X_{i}, Y_{i+2}) + \sum_{i=1}^{97} Cov(X_{i}, Y_{i+1}) + \sum_{i=1}^{98} Cov(X_{i}, Y_{i}) + \sum_{i=2}^{98} Cov(X_{i}, Y_{i-1}) + \sum_{i=3}^{98} Cov(X_{i}, Y_{i-2}) \\ &= 96 \cdot Cov(X_{1}, Y_{3}) + 97 \cdot Cov(X_{1}, Y_{2}) + 98 \cdot Cov(X_{1}, Y_{1}) + 97 \cdot Cov(X_{2}, Y_{1}) + 96 \cdot Cov(X_{3}, Y_{1}) \end{split}$$

Since these are indicator variables, we know that $Cov(X_i, Y_j) = E(X_i Y_j) - E(X_i)E(Y_j) = P(X_i \cap Y_j) - P(X_i)P(Y_j) = P(X_i \cap Y_j) - 1/64$ (since X_i and Y_j are both specific three-coin sequences).

The probability of Y_1 occurring at the same time as X_1 , X_2 , or X_3 is zero. The probability of Y_2 occurring at the same time as X_1 is 1/16, and the probability of Y_3 occurring at the same time as X_1 is 1/32. The covariance is therefore

$$Cov(X,Y) = 96 \cdot (1/32 - 1/64) + 97 \cdot (1/16 - 1/64) + 98 \cdot (-1/64) + 97 \cdot (-1/64) + 96 \cdot (-1/64) = 1.5$$

6. Prove that if P(E|F) > P(E) then $P(E|\overline{F}) < P(E)$ (in other words, if E and F are positively correlated then E and \overline{F} are negatively correlated).

$$\begin{split} P(E) &= P(E|F)P(F) + P(E|\overline{F})P(\overline{F}) \\ &> P(E)P(F) + P(E|\overline{F})P(\overline{F}) \\ P(E)(1-P(F)) &> P(E|\overline{F})P(\overline{F}) \\ P(E)P(\overline{F}) &> P(E|\overline{F})P(\overline{F}) \\ P(E) &> P(E|\overline{F}) \end{split}$$