Chapter 6.3: Permutations and Combinations Tuesday, July 21

Summary

• Pascal's Identity: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$

• Binomial Theorem: $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$

• Vandermonde's Identity: $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$

• Multinomial Theorem: $(x_1 + x_2 + \dots + x_m)^n = \sum_{n_1 + n_2 + \dots + n_m = n} \frac{n!}{n_1! n_2! \cdots n_m!} x_1^{n_1} x_2^{n_2} \cdots x_m^{n_m}$

Binomial Theorem

1. You flip 5 coins. How many ways are there to get an even number of heads?

2. Evaluate using the Binomial Theorem: $\sum_{i=0}^{10} \binom{10}{i} 4^{10-i}.$

3. (★) How many ways to rearrange the letters in COUSCOUS?

4. Prove algebraically: if $1 \le k \le n$ then $\binom{n}{k} \ge \left(\frac{n}{k}\right)^k$.

5. You have 3 red hats and 4 green hats and 5 blue hats and 12 friends. How many ways to give each friend a hat?

Combinatorial Proofs

1. (\bigstar) Show that if n is a positive integer then $\binom{2n}{2} = 2\binom{n}{2} + n^2$, by combinatorial proof and by algebraic manipulation. (Hint: there are n boys and n girls. If you want to pick 2 people for a team, break down by the number of girls you pick.)

Pascal's Triangle

- 1. Show that $\frac{4^n}{2n+1} \le \binom{2n}{n} \le 4^n$.
- 2. (\bigstar) Verify for n = 0, 1, 2, 3, 4 the relation $\sum_{j+k=n} \binom{j}{k} = f_n$, the n-th Fibonacci number. Draw a picture illustrating this identity on Pascal's Triangle, then prove by induction.

Challenge

- 1. If $1 \le k \le n$ then $\binom{n}{k} < \left(\frac{en}{k}\right)^k$ (use Binomial Theorem and the fact that $e^x > 1 + x$ for $x \ne 0$).
- 2. If $1 \le k \le n$ then $\sum_{j=0}^{k} \binom{n}{j} < \left(\frac{en}{k}\right)^k$.

Problems from Rosen

6.4: 14, 19, 20, 21, 22, 24, 29, 32, 33. The book has lots of good exercises with making combinatorial arguments.