Chapter 6.3: Permutations and Combinations
Tuesday, July 21

Summary

e Pascal’s Identity: (n —]: 1) = (Z) + (k i 1)

e Binomial Theorem: (z 4 y)" = Z (n> xn*jyj
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e Multinomial Theorem: (z1 +z2 + -+ 4+ 2,)" = Z
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Binomial Theorem

1. You flip 5 coins. How many ways are there to get an even number of heads?
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2. Evaluate using the Binomial Theorem: ( )4101.
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3. (%) How many ways to rearrange the letters in COUSCOUS?

k
4. Prove algebraically: if 1 < k <n then (Z) > (%) .
5. You have 3 red hats and 4 green hats and 5 blue hats and 12 friends. How many ways to give each

friend a hat?

Combinatorial Proofs

n

2
1. (%) Show that if n is a positive integer then (;) = 2(2

algebraic manipulation. (Hint: there are n boys and n girls. If you want to pick 2 people for a team,
break down by the number of girls you pick.)

) + n?, by combinatorial proof and by



Pascal’s Triangle
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1. Show that < ( n) < 4m,
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2. (%) Verify for n = 0, 1,2, 3, 4 the relation Z (‘;) = fn, the n-th Fibonacci number. Draw a picture
Jjt+k=n
illustrating this identity on Pascal’s Triangle, then prove by induction.

Challenge
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1. If 1 < k < n then (Z) < (—) (use Binomial Theorem and the fact that e* > 1 + z for « # 0).
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Problems from Rosen

6.4: 14, 19, 20, 21, 22, 24, 29, 32, 33. The book has lots of good exercises with making combinatorial
arguments.



