Chapter 6.3: Permutations and Combinations
 Tuesday, July 21

Summary

- Pascal's Identity: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$
- Binomial Theorem: $(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}$
- Vandermonde's Identity: $\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}$
- Multinomial Theorem: $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{n_{1}+n_{2}+\cdots n_{m}=n} \frac{n!}{n_{1}!n_{2}!\cdots n_{m}!} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{m}^{n_{m}}$

Binomial Theorem

1. You flip 5 coins. How many ways are there to get an even number of heads?
2. Evaluate using the Binomial Theorem: $\sum_{i=0}^{10}\binom{10}{i} 4^{10-i}$.
3. (\star) How many ways to rearrange the letters in COUSCOUS?
4. Prove algebraically: if $1 \leq k \leq n$ then $\binom{n}{k} \geq\left(\frac{n}{k}\right)^{k}$.
5. You have 3 red hats and 4 green hats and 5 blue hats and 12 friends. How many ways to give each friend a hat?

Combinatorial Proofs

1. (\star) Show that if n is a positive integer then $\binom{2 n}{2}=2\binom{n}{2}+n^{2}$, by combinatorial proof and by algebraic manipulation. (Hint: there are n boys and n girls. If you want to pick 2 people for a team, break down by the number of girls you pick.)

Pascal's Triangle

1. Show that $\frac{4^{n}}{2 n+1} \leq\binom{ 2 n}{n} \leq 4^{n}$.
2. (\star) Verify for $n=0,1,2,3,4$ the relation $\sum_{j+k=n}\binom{j}{k}=f_{n}$, the n-th Fibonacci number. Draw a picture illustrating this identity on Pascal's Triangle, then prove by induction.

Challenge

1. If $1 \leq k \leq n$ then $\binom{n}{k}<\left(\frac{e n}{k}\right)^{k}$ (use Binomial Theorem and the fact that $e^{x}>1+x$ for $x \neq 0$).
2. If $1 \leq k \leq n$ then $\sum_{j=0}^{k}\binom{n}{j}<\left(\frac{e n}{k}\right)^{k}$.

Problems from Rosen

6.4: $14,19,20,21,22,24,29,32,33$. The book has lots of good exercises with making combinatorial arguments.

