# Chapter 6.3: Permutations and Combinations <br> Tuesday, July 21 

## Summary

- $P(n, k)=$ "k-permutations of $\mathrm{n} "=n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}$
- $\binom{n}{k}=$ "n choose $\mathrm{k} "=\frac{n(n-1) \cdot(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}$
- $\binom{n}{k}=\binom{n}{n-k}$
- Combinatorial Proofs 1: If $A$ and $B$ are finite sets and $f: A \rightarrow B$ is a bijection, then $|A|=|B|$.
- Combinatorial Proofs 2: Any two (correct) ways of counting the elements in a set will yield the same answer.


## Warmup

1. ( $\star$ ) Six people are in a club. How many ways to choose three executive members? How many ways are there to choose a president and two vice presidents? Why is the second number divisible by the first?
2. Ten people are in a room, and everyone shakes everyone else's hand exactly once. How many handshakes were there?

## Inclusion-Exclusion

1. How many 5 -digit numbers start with a 1 or end with a 0 (or both)?
2. ( $\star$ ) How many 5 -digit numbers contain at least one 1 and at least one 3 ? (Hint: what is the complemet of this set in the set of 5 -digit numbers?)

## Tricks With Counting

1. A coin is flipped seventy-three times. How many possible outcomes have more heads than tails? (Hint: what happens if you swap the words "heads" and "tails"?)
2. How may ways are there to place four red balls and two blue balls around a circular table?
3. $(\star)$ How many distinct permutations of the letters CHECKMATE contain the string TEAM? (Hint: treat the string "TEAM" as a solid block and go from there.)

## Combinatorial Proofs

1. People go around in a room shaking hands with one another (though it is not necessarily true that everybody shakes everybody else's hand). Prove that the number of people who shake an odd number of hands is even. (Count the number of person-handshakes, first by person and then by handshake.)
2. $(\star)$ Find an argument by bijection that the number of subsets of $\{1 \ldots n\}$ of even size is equal to the number of subsets of odd size. (Is 1 in your set, or isn't it?)
3. Find an argument by bijection that $\binom{2 n}{n}$ is even for all $n \geq 1$. (Let $S$ be the set of all $n$-combinations of $\{1 \ldots 2 n\}$ and find a bijection from $S$ to itself. If no sets are left fixed under this function, why does that prove that the size is even?)

## Suggested From Rosen

6.3: 19, 21, 23, 24, 33, 34, 35

