Prime Factors, Divisors, and Friends
 Wednesday, July 15

Prime Factors and Divisors

1. Find the number of divisors of the following numbers:
(a) 80
(c) 256
(e) 10 !
(b) 430
(d) 143
(f) $6^{1} 8$
2. How many times is 100 ! divisible by 7 ?
3. Define $\binom{p}{n}$ by $\frac{p!}{n!}(p-n)$!. Show that if p is prime and $1<n<p$ then $\binom{p}{n}$ is divisible by p.
4. For what numbers n does $d(n)=2$ hold?

5 . For what numbers n does $d(n)=3$ hold?
6 . For what numbers n does $d(n)=4$ hold?
7. Show that if $\operatorname{gcd}(a, b)=1$ then $d(a b)=d(a) d(b)$.
8. Show that $d(n) \leq 2 \sqrt{n}$ for all n.
9. There are a hundred lights in a row, numbered 1 to 100 . All of them are currently off. You flip the switches for all lights with numbers divisible by 1. Then you do the same for all lights with numbers divisible by $2,3, \ldots, 99,100$. How many lights are now on?

Euler's Phi Function

1. Show that $\varphi(p)=p-1$.
2. Show that $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n}(1-1 / p)$.
3. Show that if $\operatorname{gcd}(a, b)=1$ then $\varphi(a b)=\varphi(a) \varphi(b)$.
4. Show that $\varphi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.
5. Show that if $\operatorname{gcd}(a, b)=1$ then $a^{\varphi(b)} \equiv 1(\bmod b)$.
6. Find $\varphi(15)$ and evaluate $2^{66}(\bmod 15)$.
7. Make multiplication tables for $\mathbb{Z}_{5}^{\times}, \mathbb{Z}_{8}^{\times}, \mathbb{Z}_{10}^{\times}$, and \mathbb{Z}_{12}^{\times}. Make observations.
8. Make multiplication tables for \mathbb{Z}_{7}^{\times}and \mathbb{Z}_{9}^{\times}. Make observations.

Proofs of the Infinitude of Primes

1. Show that $n!+1$ must have a prime factor greater than n. Conclude that there are infinitely many primes.
2. Modify Euclid's proof to show that there are infinitely many primes of the form $4 n+3$.
3. Use Euclid's proof plus strong induction to show that if p_{n} is the n-th prime number then $p_{n} \leq 2^{2^{n}}$.

Mersenne Primes

1. If $2^{p}-1$ is prime then $2^{p-1}\left(2^{p}-1\right)$ is a perfect number.
2. (Euclid-Euler Theorem) All even perfect numbers are of the above form.
3. If $a \geq 3$ and $n \geq 2$ then $a^{n}-1$ is composite.
4. If $2^{p}-1$ is prime then p is prime.
5. (Harder) if p is an odd prime then the only factors of $2^{p}-1$ are equivalent to $1 \bmod 2 \mathrm{p}$.
6. Use the above result to find a new proof that there are infinitely many primes.

Fermat Primes

1. Besides F_{0} and F_{1}, all Fermat numbers have last digit 7.
2. Show that Fermat numbers satisfy the following relations for $n \geq 1$:
(a) $F_{n}=\left(F_{n-1}-1\right)^{2}+1$
(b) $F_{n}=F_{n-1}+2^{2^{n-1}} \prod_{i=0}^{n-2} F_{i}$
(c) $F_{n}=F_{n-1}^{2}-2\left(F_{n-2}-1\right)^{2}$
(d) $F_{n}=2+\prod_{i=0}^{n-1} F_{i}$
3. Use the last relation in the previous question to show that any two Fermat numbers are relatively prime. Conclude that there are infinitely many primes.
4. If $2^{k}+1$ is an odd prime, then k is a power of 2 .

Orders of Elements

1. Write . $123123123123123 \ldots$ as a fraction.
2. Write $17 / 33$ as a repeating decimal.
3. Find the orders of $1,5,13$, and 17 in \mathbb{Z}_{36}^{\times}.
4. Find the order of 10 in \mathbb{Z}_{13}^{\times}. What is the period length in the decimal expansion of $1 / 13$?
5. If an element a has order n in \mathbb{Z}_{m}^{\times}, prove that $1, a, a^{2}, a^{3}, \ldots, a^{n-1}$ are all distinct $\bmod m$.
6. If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime then $\operatorname{ord}(a b)=\operatorname{ord}(a) \cdot \operatorname{ord}(b)$.
7. In general, $\operatorname{ord}(a b)=l c m(\operatorname{ord}(a), \operatorname{ord}(b))$.
