Prime Factors, Divisors, and Friends
 Wednesday, July 15

Prime Factors and Divisors

1. Find the number of divisors of the following numbers:
(a) 80
$80=2^{4} \cdot 5$, so 80 has $(4+1)(1+1)=10$ divisors.
(b) 430
$430=2 \cdot 5 \cdot 43$ and so has $2 \cdot 2 \cdot 2=8$ divisors.
(c) 256
$256=2^{8}$ and so has 9 divisors.
(d) 143
$143=13 \cdot 11$, and so has 4 divisors.
(e) 10 !
$10!=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7$, and so has $9 \cdot 5 \cdot 3 \cdot 2=270$ divisors.
(f) $6^{1} 8$
$6^{18}=2^{18} \cdot 3^{18}$ and so has $19^{2}=361$ divisors.
2. How many times is 100 ! divisible by 7 ?

100 ! is divisible by $7\lfloor 100 / 7\rfloor+\lfloor 100 / 49\rfloor=14+2=16$ times.
3. Define $\binom{p}{n}$ by $\frac{p!}{n!(p-n)!}$. Show that if p is prime and $1<n<p$ then $\binom{p}{n}$ is divisible by p.
p ! is divisible by p but n ! and $(p-n)$! (having only factors smaller than p) are not. By the uniqueness of prime factorization, $\binom{p}{n}$ is divisible by p.
4. For what numbers n does $d(n)=2$ hold?

Primes only.
5. For what numbers n does $d(n)=3$ hold?

Only when $n=p^{2}$ for p prime.
6 . For what numbers n does $d(n)=4$ hold?
When $n=p q$ with p, q prime or when $n=p^{3}$ with p prime.
7. Show that if $\operatorname{gcd}(a, b)=1$ then $d(a b)=d(a) d(b)$.

One way to solve this: let $\operatorname{Div}(\mathrm{a}), \operatorname{Div}(\mathrm{b})$, and $\operatorname{Div}(\mathrm{ab})$ be the set of positive divisors of a, b, and $a b$, respectively. We will make a function $f: \operatorname{Div}(a) \times \operatorname{Div}(b) \rightarrow \operatorname{Div}(a b)$ defined by $f(m, n)=m n$ and show that it is a bijection, thus showing that the two sets have the same numbers of elements.

One-to-one: suppose that $m n=m^{\prime} n^{\prime}$. We want to show that $m=m^{\prime}$ and $n=n^{\prime}$. Since $m, m^{\prime} \mid a$ and $n, n^{\prime} \mid b$ but $\operatorname{gcd}(a, b)=1$ we can say that $\operatorname{gcd}(m, n)=\operatorname{gcd}\left(m, n^{\prime}\right)=\operatorname{gcd}\left(m^{\prime}, n\right)=\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)=1$. Since $m n \mid m^{\prime} n^{\prime}$ we know that $m \mid m^{\prime}$, and similarly $m^{\prime} \mid m$. Therefore $m=m^{\prime}$ and so $n=n^{\prime}$. This establishes that f is one-to-one.
Onto: Let $k \mid a b$. We want to show that there exist $m \mid a$ and $n \mid b$ such that $m n=k$. Let $m=\operatorname{gcd}(a, k)$ and let $n=\operatorname{gcd}(b, k) . m \mid a$ and $n \mid b$ by definition of the gcd, and because $\operatorname{gcd}(a, b)=1$ we know that $\operatorname{gcd}(a, k) \cdot \operatorname{gcd}(b, k)=\operatorname{gcd}(a b, k)$ (prove this!) Therefore $m n=\operatorname{gcd}(a, k) \cdot \operatorname{gcd}(b, k)=\operatorname{gcd}(a b, k)=k$, proving that f is onto.
This shows that f is a bijection and therefore that $d(a b)=d(a) d(b)$.
8. Show that $d(n) \leq 2 \sqrt{n}$ for all n.

If $a b=n$ then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$. There are at most \sqrt{n} divisors of n less than or equal to \sqrt{n}, and they have at most \sqrt{n} partners greater than or equal to $\sqrt{n} \ldots 2 \sqrt{n}$ in total.
9. There are a hundred lights in a row, numbered 1 to 100. All of them are currently off. You flip the switches for all lights with numbers divisible by 1 . Then you do the same for all lights with numbers divisible by $2,3, \ldots, 99,100$. How many lights are now on?
For you to solve!

Euler's Phi Function

1. Show that $\varphi(p)=p-1$.

If p is prime, then $\operatorname{gcd}(a, p)=1$ for all $1 \leq a<p$, so for $p-1$ elements in total.
2. Show that $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n}(1-1 / p)$.

A number a is relatively prime to p^{n} if and only if it is not divisble by p, so there are $p^{n}-p^{n} / p=$ $p^{n}(1-1 / p)$ such elements in total.
3. Show that if $\operatorname{gcd}(a, b)=1$ then $\varphi(a b)=\varphi(a) \varphi(b)$.

The number produced by solving a system of congruences $x \equiv m(\bmod a), x \equiv n(\bmod b)$ has (by the Chinese Remainder Theorem) a unique solution mod ab, so solving such a system of congruences marked by (m, n) gives a bijection $\mathbb{Z}_{a} \times \mathbb{Z}_{b} \leftrightarrow \mathbb{Z}_{a b}$.
Additionally, if $\operatorname{gcd}(n, a)=\operatorname{gcd}(m, b)=1$ then the solution produced by the algorithm for the Chinese remainder theorem must be relatively prime to $a b$. Thus the function is also a bijection $\mathbb{Z}_{a}^{\times} \times \mathbb{Z}_{b}^{\times} \leftrightarrow \mathbb{Z}_{a b}^{\times}$.
4. Show that $\varphi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

Give the prime factorization of n by $n=\prod_{i=1}^{k} p_{i}^{a_{i}}$. Then

$$
\begin{aligned}
\varphi(n) & =\varphi\left(\prod_{i} p_{i}^{a_{i}}\right) \\
& =\prod_{i} \varphi\left(p_{i}^{a_{i}}\right) \\
& =\prod_{i} p_{i}^{a_{i}}(1-1 / p) \\
& =\prod_{i} p_{i}^{a_{i}} \prod_{i}(1-1 / p) \\
& =n \prod_{i}(1-1 / p)
\end{aligned}
$$

5. Show that if $\operatorname{gcd}(a, b)=1$ then $a^{\varphi(b)} \equiv 1(\bmod b)$.

Let c be any number such that $\operatorname{gcd}(c, b)=1$. Then since $\operatorname{gcd}(a, b)=1$, we know that $\operatorname{gcd}(a c, b)=1$ as well. So the function $f(c)=a c(\bmod b)$ gives a bijection from \mathbb{Z}_{b}^{\times}to \mathbb{Z}_{b}^{\times}. Therefore

$$
\begin{aligned}
\prod_{c \in \mathbb{Z}_{b}^{\times}} c & \equiv \prod_{c \in \mathbb{Z}_{b}^{\times}} a c \\
& \equiv a^{\varphi(b)} \prod_{c \in \mathbb{Z}_{b}^{\times}} c \quad(\bmod b)
\end{aligned}
$$

Dividing by the product on both sides (which we can do, since it is relatively prime to b), we get $1 \equiv a^{\varphi(b)}$.
6. Find $\varphi(15)$ and evaluate $2^{66}(\bmod 15)$.
$\varphi(15)=15 \cdot(1 / 2) \cdot(4 / 5)=8$, so $2^{66}=2^{64} \cdot 2^{2} \equiv 2^{2} \equiv 4(\bmod 15)$.
7. Make multiplication tables for $\mathbb{Z}_{5}^{\times}, \mathbb{Z}_{8}^{\times}, \mathbb{Z}_{10}^{\times}$, and \mathbb{Z}_{12}^{\times}. Make observations.

Done in class. The interesting thing to note is that the square of every element in \mathbb{Z}_{8}^{\times}and \mathbb{Z}_{12}^{\times}is 1 , which is not the case in the other two groups.
8. Make multiplication tables for \mathbb{Z}_{7}^{\times}and \mathbb{Z}_{9}^{\times}. Make observations.

\mathbb{Z}_{7}^{\times}	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

\mathbb{Z}_{9}^{\times}	1	2	4	5	7	8
1	1	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8	7	2	1	5
5	5	1	2	7	8	4
7	7	5	1	8	4	2
8	8	7	5	4	2	1

One thing to note is a symmetry in the tables. . for example $5 \cdot 7 \equiv(-4)(-2) \equiv 4 \cdot 2$, so rotating the table 180 degrees keeps it the same.

See 4-2-sols for the proofs relating to the infinitude of primes. Remaining proofs to be given after tomorrow.

Proofs of the Infinitude of Primes

1. Show that $n!+1$ must have a prime factor greater than n. Conclude that there are infinitely many primes.
2. Modify Euclid's proof to show that there are infinitely many primes of the form $4 n+3$.
3. Use Euclid's proof plus strong induction to show that if p_{n} is the n -th prime number then $p_{n} \leq 2^{2^{n}}$.

Mersenne Primes

1. If $2^{p}-1$ is prime then $2^{p-1}\left(2^{p}-1\right)$ is a perfect number.
2. (Euclid-Euler Theorem) All even perfect numbers are of the above form.
3. If $a \geq 3$ and $n \geq 2$ then $a^{n}-1$ is composite.
4. If $2^{p}-1$ is prime then p is prime.
5. (Harder) if p is an odd prime then the only factors of $2^{p}-1$ are equivalent to $1 \bmod 2 \mathrm{p}$.
6. Use the above result to find a new proof that there are infinitely many primes.

Fermat Primes

1. Besides F_{0} and F_{1}, all Fermat numbers have last digit 7 .
2. Show that Fermat numbers satisfy the following relations for $n \geq 1$:
(a) $F_{n}=\left(F_{n-1}-1\right)^{2}+1$
(b) $F_{n}=F_{n-1}+2^{2^{n-1}} \prod_{i=0}^{n-2} F_{i}$
(c) $F_{n}=F_{n-1}^{2}-2\left(F_{n-2}-1\right)^{2}$
(d) $F_{n}=2+\prod_{i=0}^{n-1} F_{i}$
3. Use the last relation in the previous question to show that any two Fermat numbers are relatively prime. Conclude that there are infinitely many primes.
4. If $2^{k}+1$ is an odd prime, then k is a power of 2 .

Orders of Elements

1. Write . $123123123123123 \ldots$ as a fraction.
2. Write $17 / 33$ as a repeating decimal.
3. Find the orders of $1,5,13$, and 17 in \mathbb{Z}_{36}^{\times}.
4. Find the order of 10 in \mathbb{Z}_{13}^{\times}. What is the period length in the decimal expansion of $1 / 13$?
5. If an element a has order n in \mathbb{Z}_{m}^{\times}, prove that $1, a, a^{2}, a^{3}, \ldots, a^{n-1}$ are all distinct $\bmod m$.
6. If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime then $\operatorname{ord}(a b)=\operatorname{ord}(a) \cdot \operatorname{ord}(b)$.
7. In general, $\operatorname{ord}(a b)=l c m(\operatorname{ord}(a), \operatorname{ord}(b))$.
