
Prime Factors, Divisors, and Friends
Wednesday, July 15

Prime Factors and Divisors

1. Find the number of divisors of the following numbers:

(a) 80

80 = 24 · 5, so 80 has (4 + 1)(1 + 1) = 10 divisors.

(b) 430

430 = 2 · 5 · 43 and so has 2 · 2 · 2 = 8 divisors.

(c) 256

256 = 28 and so has 9 divisors.

(d) 143

143 = 13 · 11, and so has 4 divisors.

(e) 10!

10! = 28 · 34 · 52 · 7, and so has 9 · 5 · 3 · 2 = 270 divisors.

(f) 618

618 = 218 · 318 and so has 192 = 361 divisors.

2. How many times is 100! divisible by 7?

100! is divisible by 7 b100/7c+ b100/49c = 14 + 2 = 16 times.

3. Define

(
p

n

)
by p!

n!(p−n)! . Show that if p is prime and 1 < n < p then

(
p

n

)
is divisible by p.

p! is divisible by p but n! and (p− n)! (having only factors smaller than p) are not. By the uniqueness

of prime factorization,

(
p

n

)
is divisible by p.

4. For what numbers n does d(n) = 2 hold?

Primes only.

5. For what numbers n does d(n) = 3 hold?

Only when n = p2 for p prime.

6. For what numbers n does d(n) = 4 hold?

When n = pq with p, q prime or when n = p3 with p prime.

7. Show that if gcd(a, b) = 1 then d(ab) = d(a)d(b).

One way to solve this: let Div(a), Div(b), and Div(ab) be the set of positive divisors of a, b, and ab,
respectively. We will make a function f : Div(a) ×Div(b) → Div(ab) defined by f(m,n) = mn and
show that it is a bijection, thus showing that the two sets have the same numbers of elements.

One-to-one: suppose that mn = m′n′. We want to show that m = m′ and n = n′. Since m,m′|a and
n, n′|b but gcd(a, b) = 1 we can say that gcd(m,n) = gcd(m,n′) = gcd(m′, n) = gcd(m′, n′) = 1. Since
mn|m′n′ we know that m|m′, and similarly m′|m. Therefore m = m′ and so n = n′. This establishes
that f is one-to-one.

Onto: Let k|ab. We want to show that there exist m|a and n|b such that mn = k. Let m = gcd(a, k)
and let n = gcd(b, k). m|a and n|b by definition of the gcd, and because gcd(a, b) = 1 we know that
gcd(a, k) · gcd(b, k) = gcd(ab, k) (prove this!) Therefore mn = gcd(a, k) · gcd(b, k) = gcd(ab, k) = k,
proving that f is onto.

This shows that f is a bijection and therefore that d(ab) = d(a)d(b).
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8. Show that d(n) ≤ 2
√
n for all n.

If ab = n then a ≤
√
n or b ≤

√
n. There are at most

√
n divisors of n less than or equal to

√
n, and

they have at most
√
n partners greater than or equal to

√
n. . . 2

√
n in total.

9. There are a hundred lights in a row, numbered 1 to 100. All of them are currently off. You flip the
switches for all lights with numbers divisible by 1. Then you do the same for all lights with numbers
divisible by 2, 3, . . . , 99, 100. How many lights are now on?

For you to solve!

Euler’s Phi Function

1. Show that ϕ(p) = p− 1.

If p is prime, then gcd(a, p) = 1 for all 1 ≤ a < p, so for p− 1 elements in total.

2. Show that ϕ(pn) = pn − pn−1 = pn(1− 1/p).

A number a is relatively prime to pn if and only if it is not divisble by p, so there are pn − pn/p =
pn(1− 1/p) such elements in total.

3. Show that if gcd(a, b) = 1 then ϕ(ab) = ϕ(a)ϕ(b).

The number produced by solving a system of congruences x ≡ m (mod a), x ≡ n (mod b) has (by
the Chinese Remainder Theorem) a unique solution mod ab, so solving such a system of congruences
marked by (m,n) gives a bijection Za × Zb ↔ Zab.

Additionally, if gcd(n, a) = gcd(m, b) = 1 then the solution produced by the algorithm for the Chinese
remainder theorem must be relatively prime to ab. Thus the function is also a bijection Z×a ×Z×b ↔ Z×ab.

4. Show that ϕ(n) = n ·
∏
p|n

(1− 1

p
).

Give the prime factorization of n by n =
∏k

i=1 p
ai
i . Then

ϕ(n) = ϕ(
∏
i

pai
i )

=
∏
i

ϕ(pai
i )

=
∏
i

pai
i (1− 1/p)

=
∏
i

pai
i

∏
i

(1− 1/p)

= n
∏
i

(1− 1/p)

5. Show that if gcd(a, b) = 1 then aϕ(b) ≡ 1 (mod b).

Let c be any number such that gcd(c, b) = 1. Then since gcd(a, b) = 1, we know that gcd(ac, b) = 1 as
well. So the function f(c) = ac (mod b) gives a bijection from Z×b to Z×b . Therefore∏

c∈Z×
b

c ≡
∏
c∈Z×

b

ac

≡ aϕ(b)
∏
c∈Z×

b

c (mod b)
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Dividing by the product on both sides (which we can do, since it is relatively prime to b), we get
1 ≡ aϕ(b).

6. Find ϕ(15) and evaluate 266 (mod 15).

ϕ(15) = 15 · (1/2) · (4/5) = 8, so 266 = 264 · 22 ≡ 22 ≡ 4 (mod 15).

7. Make multiplication tables for Z×5 ,Z
×
8 ,Z

×
10, and Z×12. Make observations.

Done in class. The interesting thing to note is that the square of every element in Z×8 and Z×12 is 1,
which is not the case in the other two groups.

8. Make multiplication tables for Z×7 and Z×9 . Make observations.

Z×7 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Z×9 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

One thing to note is a symmetry in the tables. . . for example 5 · 7 ≡ (−4)(−2) ≡ 4 · 2, so rotating the
table 180 degrees keeps it the same.

See 4-2-sols for the proofs relating to the infinitude of primes. Remaining proofs
to be given after tomorrow.

Proofs of the Infinitude of Primes

1. Show that n! + 1 must have a prime factor greater than n. Conclude that there are infinitely many
primes.

2. Modify Euclid’s proof to show that there are infinitely many primes of the form 4n + 3.

3. Use Euclid’s proof plus strong induction to show that if pn is the n-th prime number then pn ≤ 22
n

.

Mersenne Primes

1. If 2p − 1 is prime then 2p−1(2p − 1) is a perfect number.

2. (Euclid-Euler Theorem) All even perfect numbers are of the above form.

3. If a ≥ 3 and n ≥ 2 then an − 1 is composite.

4. If 2p − 1 is prime then p is prime.

5. (Harder) if p is an odd prime then the only factors of 2p − 1 are equivalent to 1 mod 2p.

6. Use the above result to find a new proof that there are infinitely many primes.
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Fermat Primes

1. Besides F0 and F1, all Fermat numbers have last digit 7.

2. Show that Fermat numbers satisfy the following relations for n ≥ 1:

(a) Fn = (Fn−1 − 1)2 + 1

(b) Fn = Fn−1 + 22
n−1 ∏n−2

i=0 Fi

(c) Fn = F 2
n−1 − 2(Fn−2 − 1)2

(d) Fn = 2 +
∏n−1

i=0 Fi

3. Use the last relation in the previous question to show that any two Fermat numbers are relatively
prime. Conclude that there are infinitely many primes.

4. If 2k + 1 is an odd prime, then k is a power of 2.

Orders of Elements

1. Write .123123123123123 . . . as a fraction.

2. Write 17/33 as a repeating decimal.

3. Find the orders of 1, 5, 13, and 17 in Z×36.

4. Find the order of 10 in Z×13. What is the period length in the decimal expansion of 1/13?

5. If an element a has order n in Z×m, prove that 1, a, a2, a3, . . . , an−1 are all distinct mod m.

6. If ord(a) and ord(b) are relatively prime then ord(ab) = ord(a) · ord(b).

7. In general, ord(ab) = lcm(ord(a), ord(b)).
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