Chapter 5.1: Induction

Monday, July 13

Fermat's Little Theorem

Evaluate the following:

1. $2^{16} \pmod{5}$

4. $2^{18} \pmod{15}$

2. $3^{32} \pmod{7}$

5. $2^{25} \pmod{21}$

3. $2^{77} \pmod{19}$

6. $2^{100} \pmod{55}$

(Hard) A composite number n is called a Carmichael number $b^{n-1} \equiv 1 \pmod{n}$ for every number b such that $\gcd(b,n)=1$ (their existence is unfortunate, since it means that we cannot use FLT to tell for certain whether a number is prime). Prove: There is one and only one Carmichael number of the form $3 \cdot p \cdot q$, where p and q are prime numbers.

Induction

1. Prove that
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
 for $n \ge 0$.

2. Prove that
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 for $n \ge 0$.

3. Prove that
$$1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$$
 for $n \ge 1$.

4. Find a closed form for
$$\sum_{k=1}^{n} (-1)^k k^2$$
 and prove that it is correct.

5. For what integers is
$$2^n \ge n^3$$
 true? Prove it.

From 2 to many

- 1. Given that ab = ba, prove that $a^nb = b^na$ for all $n \ge 1$.
- 2. Given that ab = ba, prove that $a^nb^m = b^ma^n$ for all $n, m \ge 1$ (let n be arbitrary, then use the previous result and induction on m).
- 3. Given: if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$. Prove: if $a_i \equiv b_i \pmod{m}$ for $i = 1, 2, \ldots, n$, then $\sum_{i=1}^n a_i \equiv \sum_{i=1}^n b_i \pmod{m}$.
- 4. (Calculus) Suppose we know that $\frac{d}{dx}x = 1$ and that for any functions f and g, (fg)' = f'g + fg'. Prove that $\frac{d}{dx}x^n = nx^{n-1}$ for all $n \ge 1$.
- 5. Prove: $\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}$.

Recursion

- 1. Define a sequence a_n by $a_0 = 1$, $a_1 = 3$ and $a_n = a_{n-1} + 2 \cdot a_{n-2}$ for $n \ge 2$. Find a_6 . Prove that $a_n = \frac{2^{n+2} + (-1)^n}{3}$.
- 2. Define a sequence a_n by $a_0 = 1$, $a_n = 2 \cdot a_{n-1} + 1$ if $n \ge 1$. Find a non-recursive formula for a_n and prove that it is correct.
- 3. Prove: $gcd(f_{n+1}, f_n) = 1$ for all $n \ge 0$.
- 4. Prove that $f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}$ for $n \ge 1$.
- 5. Prove that $f_1 + f_3 + \cdots + f_{2n-1} = f_{2n}$ for $n \ge 1$.
- 6. Show that $f_{n+1}f_{n-1} f_n^2 = (-1)^n$ for $n \ge 1$.
- 7. Prove that $f_n = (\alpha^n \beta^n)/\sqrt{5}$, where $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 \sqrt{5})/2$. (Hint: both α and β satisfy the equation $x^2 = x + 1$).
- 8. Prove that $f_{m+n} = f_{m-1}f_n + f_m f_{n+1}$. (fix n arbitrarily, then use induction on m)
- 9. Prove (now using induction on n) that $f_m|f_{mn}$ for all $n \ge 1$.
- 10. Prove that $gcd(f_m, f_n) = f_{gcd(m,n)}$.