Chapter 5.1: Induction

Monday, July 13

Fermat's Little Theorem

Evaluate the following:

1. $2^{16}(\bmod 5)$
2. $3^{32}(\bmod 7)$
3. $2^{77}(\bmod 19)$
4. $2^{18}(\bmod 15)$
5. $2^{25}(\bmod 21)$
6. $2^{100}(\bmod 55)$
(Hard) A composite number n is called a Carmichael number $b^{n-1} \equiv 1(\bmod n)$ for every number b such that $\operatorname{gcd}(b, n)=1$ (their existence is unfortunate, since it means that we cannot use FLT to tell for certain whether a number is prime). Prove: There is one and only one Carmichael number of the form $3 \cdot p \cdot q$, where p and q are prime numbers.

Induction

1. Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $n \geq 0$.
2. Prove that $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for $n \geq 0$.
3. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)$! -1 for $n \geq 1$.
4. Find a closed form for $\sum_{k=1}^{n}(-1)^{k} k^{2}$ and prove that it is correct.
5. For what integers is $2^{n} \geq n^{3}$ true? Prove it.

From 2 to many

1. Given that $a b=b a$, prove that $a^{n} b=b^{n} a$ for all $n \geq 1$.
2. Given that $a b=b a$, prove that $a^{n} b^{m}=b^{m} a^{n}$ for all $n, m \geq 1$ (let n be arbitrary, then use the previous result and induction on m).
3. Given: if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a+c \equiv b+d(\bmod m)$. Prove: if $a_{i} \equiv b_{i}(\bmod m)$ for $i=1,2, \ldots, n$, then $\sum_{i=1}^{n} a_{i} \equiv \sum_{i=1}^{n} b_{i}(\bmod m)$.
4. (Calculus) Suppose we know that $\frac{d}{d x} x=1$ and that for any functions f and $\mathrm{g},(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Prove that $\frac{d}{d x} x^{n}=n x^{n-1}$ for all $n \geq 1$.
5. Prove: $\overline{\bigcup_{i=1}^{n} A_{i}}=\bigcap_{i=1}^{n} \overline{A_{i}}$.

Recursion

1. Define a sequence a_{n} by $a_{0}=1, a_{1}=3$ and $a_{n}=a_{n-1}+2 \cdot a_{n-2}$ for $n \geq 2$. Find a_{6}. Prove that $a_{n}=\frac{2^{n+2}+(-1)^{n}}{3}$.
2. Define a sequence a_{n} by $a_{0}=1, a_{n}=2 \cdot a_{n-1}+1$ if $n \geq 1$. Find a non-recursive formula for a_{n} and prove that it is correct.
3. Prove: $\operatorname{gcd}\left(f_{n+1}, f_{n}\right)=1$ for all $n \geq 0$.
4. Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ for $n \geq 1$.
5. Prove that $f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}$ for $n \geq 1$.
6. Show that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for $n \geq 1$.
7. Prove that $f_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. (Hint: both α and β satisfy the equation $x^{2}=x+1$).
8. Prove that $f_{m+n}=f_{m-1} f_{n}+f_{m} f_{n+1}$. (fix n arbitrarily, then use induction on m)
9. Prove (now using induction on n) that $f_{m} \mid f_{m n}$ for all $n \geq 1$.
10. Prove that $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}$.
