Chapter 5.1: Induction

Monday, July 13

Fermat's Little Theorem

Evaluate the following:

1. $2^{16} \pmod{5}$

$$2^{16} \equiv (2^4)^4 \equiv 1^4 \equiv 1 \pmod{5}$$

2. $3^{32} \pmod{7}$

$$3^{32} \equiv (3^4)^8 \equiv 1 \pmod{5}$$

3. $2^{77} \pmod{19}$

$$2^{77} \equiv (2^{18})^4 \cdot 2^5 \equiv 1^4 \cdot 32 \equiv 13 \pmod{19}$$

- 4. $2^{18} \pmod{15}$ $2^{18} \equiv 1 \pmod{3}$ and $2^{18} \equiv 4 \pmod{5}$, so solving the simultaneous equations (by whatever method you like) gives $2^{18} \equiv 4 \pmod{15}$.
- 5. $2^{25} \pmod{21}$ $2^{25} \equiv 2 \pmod{3}$ and $2^{25} \equiv 2 \pmod{7}$, so solving the two equations gives $2 \equiv 2 \pmod{21}$.
- 6. $2^{100} \pmod{55}$ $2^{100} \equiv 1 \pmod{5}$ and $2^{100} \equiv 1 \pmod{11}$, so solving the two equations gives $2^{100} \equiv 1 \pmod{55}$.

(Hard) A composite number n is called a Carmichael number $b^{n-1} \equiv 1 \pmod{n}$ for every number b such that $\gcd(b,n)=1$ (their existence is unfortunate, since it means that we cannot use FLT to tell for certain whether a number is prime). Prove: There is one and only one Carmichael number of the form $3 \cdot p \cdot q$, where p and q are prime numbers.

We know that if n = 3pq is a Carmichael number and gcd(b, n) = 1 then

$$b^{3pq-1} \equiv 1 \pmod{3pq}$$

$$b^{3pq-1} \equiv 1 \pmod{3}$$

$$b^{3pq-1} \equiv 1 \pmod{p}$$

$$b^{3pq-1} \equiv 1 \pmod{q}$$

Using Fermat's Little Theorem on the last three equations in turn gives us

$$2|3pq - 1$$
$$p - 1|3pq - 1$$
$$q - 1|3pq - 1$$

The first just tells us that p and q must be odd. Then since 3pq - 1 = 3pq - 3q + 3q - 1 = 3q(p-1) + 3q - 1 (and similarly 3pq - 1 = 3p(q-1) + 3p - 1), we can conclude

$$p-1|3q-1$$
$$q-1|3p-1$$

Suppose (without loss of generality) that p < q. Then since q - 1|3p - 1 < 3q - 1, we know that either q - 1 = 3p - 1 or 2(q - 1) = 3p - 1. The first possibility would give q = 3p, contradicting the given that p was prime. Therefore 2(q - 1) = 3p - 1.

We can then substitute this into the first statement: $p-1|3q-1=3q-3+2=\frac{3}{2}(2(q-1))+2=\frac{3}{2}(3p-1)+2$, so $(p-1)|\frac{9}{2}p+1/2$, or 2p-2|9p+1, or 2p-2|9p+1-4(2p-2)=p+9. Since 2p-2|p+9 means that $2p-2\leq p+9$, we must have $p\leq 11$. Since $p\neq 3$, checking the other cases 5, 7, and 11 show that p=11 is the only option. Therefore q=17, and the only Carmichael number of the form 3pq is $3\cdot 11\cdot 17=561$.

Induction

1. Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for $n \ge 0$.

Base case: it works for n = 0 since 0 = 0(0+1)(0+2)/6.

Inductive step. Suppose that the formula works for n. Then

$$(1^{2} + 2^{2} + \dots + n^{2}) + (n+1)^{2} = n(n+1)(2n+1)/6 + n^{2} + 2n + 1$$

$$= \frac{2n^{3} + 3n^{2} + 2n + 6n^{2} + 12n + 6}{6}$$

$$= \frac{2n^{3} + 9n^{2} + 14n + 6}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

2. Prove that $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$ for $n \ge 0$.

Base case: it works for n = 0.

Inductive step: suppose it works for n. Then

$$(1^{3} + 2^{3} + \dots + n^{3}) + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + n^{3} + 3n^{2} + 3n + 1$$

$$= \frac{n^{4} + 2n^{3} + n^{2} + 4n^{3} + 12n^{2} + 12n + 4}{4}$$

$$= \frac{n^{4} + 6n^{3} + 13n^{2} + 12n + 4}{4}$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$

3. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ for $n \ge 1$.

Base case: it works for n = 1.

Inductive step: suppose it works for n. Then

$$(1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n!) + (n+1) \cdot (n+1)! = (n+1)! - 1 + [(n+2) \cdot (n+1)! - (n+1)!] = (n+2)! - 1$$

4. Find a closed form for $\sum_{k=1}^{n} (-1)^k k^2$ and prove that it is correct.

The first few terms are $-1, 3, -6, 10, -15, \ldots$, so guess that the formula is $(-1)^n n(n+1)/2$.

Base case: The formula works for n = 1.

Inductive step: suppose that it works for n. Then

$$\sum_{k=1}^{n+1} (-1)^k k^2 = \sum_{k=1}^n (-1)^k k^2 + (-1)^{n+1} (n+1)^2$$

$$= (-1)^n n(n+1)/2 + (-1)^{n+1} (n^2 + 2n + 1)$$

$$= (-1)^{n+1} \frac{2n^2 + 4n + 2 - n^2 - n}{2}$$

$$= (-1)^{n+1} \frac{n^2 + 3n + 2}{2}$$

$$= (-1)^{n+1} \frac{(n+1)(n+2)}{2}$$

5. For what integers is $2^n \ge n^3$ true? Prove it.

True for n = 0, n = 1, but also for $n \ge 10$.

Base case: $2^{10} = 1024 \ge 1000 = 10^3$.

Inductive step: suppose that $2^n \ge n^3$. Then

$$2^{n+1} = 2 \cdot 2^n$$

$$= 2^n + 2^n$$

$$\geq n^3 + n^3$$

$$\geq n^3 + 10n^2$$

$$\geq n^3 + 3n^2 + 3n + 1$$

$$= (n+1)^3$$

The step $n^3 + n^3 \ge n^3 + 10n^2$ relied on the fact that $n \ge 10$.

From 2 to many

1. Given that ab = ba, prove that $a^nb = ba^n$ for all $n \ge 1$. (Original problem had a typo.)

Base case: $a^1b = ba^1$ was given, so it works for n = 1.

Inductive step: if $a^nb = ba^n$, then $a^{n+1}b = a(a^nb) = aba^n = baa^n = ba^{n+1}$.

2. Given that ab = ba, prove that $a^nb^m = b^ma^n$ for all $n, m \ge 1$ (let n be arbitrary, then use the previous result and induction on m).

Base case: if m=1 then $a^nb=ba^n$ was given by the result of the previous problem.

Inductive step: if $a^nb^m = b^ma^n$ then $a^nb^{m+1} = a^nb^mb = b^ma^nb = b^mba^n = b^{m+1}a^n$.

3. Given: if $a \equiv b \pmod m$ and $c \equiv d \pmod m$ then $a+c \equiv b+d \pmod m$. Prove: if $a_i \equiv b_i \pmod m$ for $i=1,2,\ldots,n$, then $\sum_{i=1}^n a_i \equiv \sum_{i=1}^n b_i \pmod m$.

Base case: When n=2 the formula $a+c\equiv b+d\pmod m$ was already given.

Inductive step: Supposing the formula works for n, we get

$$\sum_{i=1}^{n+1} a_i = \left(\sum_{i=1}^n a_i\right) + a_{n+1}$$

$$\equiv \sum_{i=1}^n b_i + b_{n+1}$$

$$\equiv \sum_{i=1}^{n+1} b_i$$

4. (Calculus) Suppose we know that $\frac{d}{dx}x = 1$ and that for any functions f and g, (fg)' = f'g + fg'. Prove that $\frac{d}{dx}x^n = nx^{n-1}$ for all $n \ge 1$.

Base case: when n = 1, $\frac{d}{dx}x^1 = 1 = 1 \cdot x^0$.

Inductive step: If $\frac{d}{dx}x^n = nx^{n-1}$, then

$$\frac{d}{dx}x^{n+1} = (x \cdot x^n)'$$

$$= x' \cdot x^n + (x^n)' \cdot x$$

$$= x^n + nx^{n-1} \cdot x$$

$$= (n+1)x^n$$

4

5. Prove: $\overline{\bigcup_{i=1}^n A_i} = \bigcap_{i=1}^n \overline{A_i}$.

Base case: When n=2 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ is given by one of DeMorgan's Laws.

Inductive step: Suppose the formula works for n. Then

$$\bigcup_{i=1}^{n+1} A_i = \bigcup_{i=1}^n A_i \cup A_{n+1}$$

$$= \bigcup_{i=1}^n A_i \cap \overline{A_{n+1}}$$

$$= \bigcap_{i=1}^n \overline{A_i} \cap \overline{A_{n+1}}$$

$$= \bigcap_{i=1}^{n+1} \overline{A_i}$$

Recursion

1. Define a sequence a_n by $a_0 = 1$, $a_1 = 3$ and $a_n = a_{n-1} + 2 \cdot a_{n-2}$ for $n \ge 2$. Find a_6 . Prove that $a_n = \frac{2^{n+2} + (-1)^n}{3}$.

a_0	a_1	a_2	a_3	a_4	a_5	a_6
1	3	5	11	21	43	85

Base case for proof by induction: The formula works for n = 0 and n = 1.

Inductive step: Suppose that the formula works for n AND n + 1. Then

$$a_{n+2} = a_{n+1} + 2a_n$$

$$= \frac{2^{n+3} + (-1)^{n+1}}{3} + 2 \cdot \frac{2^{n+2} + (-1)^n}{3}$$

$$= \frac{2 \cdot 2^{n+3} + (-1)^n}{3}$$

$$= \frac{2^{n+4} + (-1)^{n+2}}{3}$$

Note that this time we needed to use the formula for both a_{n+1} and a_n , so we needed to prove two base cases.

2. Define a sequence a_n by $a_0 = 1$, $a_n = 2 \cdot a_{n-1} + 1$ if $n \ge 1$. Find a non-recursive formula for a_n and prove that it is correct.

The sequence goes $1, 3, 7, 15, 31, \ldots$ guess that it is equal to $2^{n+1} - 1$.

Prove the base case: it works for n = 0.

Inductive step: If it works for n, then $a_{n+1} = 2 \cdot a_n + 1 = 2 \cdot (2^{n+1} - 1) + 1 = 2^{n+2} - 2 + 1 = 2^{n+2} - 1$.

3. Prove: $gcd(f_{n+1}, f_n) = 1$ for all $n \ge 0$.

Proof: $gcd(f_0, f_1) = gcd(0, 1) = 1$ for the base case n = 0.

Inductive step: use the fact that gcd(a, b) = gcd(a - b, b). Then if the proposition holds for n, we have $gcd(f_{n+2}, f_{n+1}) = gcd(f_{n+2} - f_{n+1}, f_{n+1}) = gcd(f_n, f_{n+1}) = 1$.

4. Prove that $f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}$ for $n \ge 1$.

Base case: it works for n = 1 since $f_1^2 = 1 \cdot 1 = f_1 f_2$.

Inductive step: if the formula holds for n, then

$$(f_1^2 + f_2^2 + \dots + f_n^2) + f_{n+1}^2 = f_n f_{n+1} + f_{n+1} f_{n+1}$$
$$= f_{n+1} (f_n + f_{n+1})$$
$$= f_{n+1} f_{n+2}$$

5. Prove that $f_1 + f_3 + \cdots + f_{2n-1} = f_{2n}$ for $n \ge 1$. (Original problem had a typo.)

Base case: $f_1 = 1 = f_2$ when n = 1.

Inductive step: if the formula holds for n, then

$$(f_1 + f_3 + \dots + f_{2n-1}) + f_{2n+1} = f_{2n} + f_{2n+1}$$

= f_{2n+2}

6. Show that $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for $n \ge 1$.

Base case: when n = 1, we have $f_2 f_0 - f_1^2 = 0 - 1 = (-1)^1$.

Inductive step: If the formula holds for n then

$$f_{n+2}f_n - f_{n+1}^2 = (f_n + f_{n+1})f_n - f_{n+1}^2$$

$$= f_n^2 + f_{n+1}f_n - f_{n+1}^2$$

$$= f_n^2 + f_{n+1}(f_n - f_{n+1})$$

$$= f_n^2 + f_{n+1}(-f_{n-1})$$

$$= -(f_{n+1}f_{n-1} - f_n^2)$$

$$= -(-1)^n$$

$$= (-1)^{n+1}$$

7. Prove that $f_n = (\alpha^n - \beta^n)/\sqrt{5}$, where $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 - \sqrt{5})/2$. (Hint: both α and β satisfy the equation $x^2 = x + 1$).

Proof: It holds for f_0 and f_1 , base cases n = 0 and n = 1.

Inductive step: if it holds for n AND n+1 then

$$f_{n+2} = f_{n+1} + f_n$$

$$= \frac{\alpha^{n+1} - \beta^{n+1}}{\sqrt{5}} + \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

$$= \frac{\alpha^n(\alpha + 1) - \beta^n(\beta + 1)}{\sqrt{5}}$$

$$= \frac{\alpha^{n+2} - \beta^{n+2}}{\sqrt{5}}$$

8. Prove that $f_{m+n} = f_{m-1}f_n + f_m f_{n+1}$. (fix n arbitrarily, then use induction on m)

Base case: when m = 1 the formula becomes $f_{n+1} = f_0 f_n + f_1 f_{n+1}$, which is true because $f_0 = 0$ and $f_1 = 1$.

Inductive step: Suppose the formula holds for m. Then

$$f_{(m+1)+n} = f_{m+(n+1)}$$

$$= f_{m-1}f_{n+1} + f_mf_{n+2}$$

$$= f_{m-1}f_{n+1} + (f_mf_{n+1} + f_mf_n)$$

$$= (f_{m-1} + f_m)f_{n+1} + f_mf_n$$

$$= f_mf_n + f_{m+1}f_{n+1}$$

$$= f_{(m+1)-1}f_n + f_{m+1}f_{n+1}$$

9. Prove (now using induction on n) that $f_m|f_{mn}$ for all $n \ge 1$.

Base case: When n=1 this is just $f_m|f_m$, which is clearly true.

Inductive step: suppose $f_m|f_{mn}$. Then

$$f_{m(n+1)} = f_{mn+m}$$

= $f_{mn-1}f_m + f_{mn}f_{m+1}$.

Since f_m and (by the inductive hypothesis) f_{mn} are both divisible by f_m , the linear combination (and therefore $f_{m(n+1)}$) is also divible by f_m .

10. Prove that $gcd(f_m, f_n) = f_{gcd(m,n)}$.

Let n = qm + r. Since $f_m | f_{qm}$ (from the previous problem), we know that

$$\gcd(f_m, f_n) = \gcd(f_m, f_{qm+r})$$

$$= \gcd(f_m, f_{qm-1}f_r + f_{qm}f_{r+1})$$

$$= \gcd(f_m, f_{qm-1}f_r),$$

Then since $f_m|f_{qm}$ but $\gcd(f_{qm}, f_{qm-1}) = 1$, we can conclude that $\gcd(f_m, f_n) = \gcd(f_m, f_{qm-1}f_r) = \gcd(f_m, f_r)$. This allows us to use a process similar to the Euclidean Algorithm and continue until we hit the greatest common divisor.

In particular, this means that if p is a prime number, then f_p shares a common divisor with f_n if and only if p|n (and if p|n then $f_p|f_n$). In particlar, we know that $f_3=2$, so (since 3 is prime), the even Fibonacci numbers will be precisely those of the form f_{3k} for $k \in \mathbb{Z}$.