Chapter 5.1: Induction

Monday, July 13

Fermat’s Little Theorem

Evaluate the following;:

1. 216 (mod 5)

20 =02"=1"=1 (mod 5)

2. 332 (mod 7)

332 =3 =18=1 (mod 5)

3. 277 (mod 19)

27T =(218)1.25=1%.32=13 (mod 19)

4. 2'8 (mod 15)
218 =1 (mod 3) and 2'® = 4 (mod 5), so solving the simultaneous equations (by whatever method
you like) gives 2! =4 (mod 15).

5. 2% (mod 21)
225 =2 (mod 3) and 22° = 2 (mod 7), so solving the two equations gives 2 = 2 (mod 21).

6. 2190 (mod 55)

2100 =1 (mod 5) and 2'%° =1 (mod 11), so solving the two equations gives 2! =1 (mod 55).

(Hard) A composite number n is called a Carmichael number v"~! = 1 (mod n) for every number b such
that ged(b,n) = 1 (their existence is unfortunate, since it means that we cannot use FLT to tell for certain
whether a number is prime). Prove: There is one and only one Carmichael number of the form 3-p- g, where
p and ¢ are prime numbers.

We know that if n = 3pq is a Carmichael number and ged(b,n) = 1 then

b7l =1 (mod 3pq)
b1 =1 (mod 3)
b7 1 =1 (mod p)
b9~ =1 (mod q)

Using Fermat’s Little Theorem on the last three equations in turn gives us

2|13pg — 1
p—1[3pg -1
q—1[3pg —1



The first just tells us that p and ¢ must be odd. Then since 3pg—1=3pg—3¢+3¢—1=3¢(p—1)+3¢—1
(and similarly 3pg — 1 = 3p(¢ — 1) + 3p — 1), we can conclude

p—1|3¢—1
qg—113p—1

Suppose (without loss of generality) that p < ¢. Then since ¢ — 1|3p — 1 < 3¢ — 1, we know that either
g—1=3p—1or2(q—1)=3p— 1. The first possibility would give ¢ = 3p, contradicting the given that p
was prime. Therefore 2(¢ — 1) = 3p — 1.

We can then substitute this into the first statment: p—1[3¢—1=3¢—3+2 = 3(2(¢—1))+2=3(3p—1)+2,
so(p—1)[§p+1/2,0r2p—2[9p+ 1, or 2p —2|9p + 1 — 4(2p — 2) = p+ 9. Since 2p — 2|p + 9 means that
2p — 2 < p+9, we must have p < 11. Since p # 3, checking the other cases 5, 7, and 11 show that p = 11 is
the only option. Therefore ¢ = 17, and the only Carmichael number of the form 3pg is 3-11-17 = 561.

Induction
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1. Prove that 12+22+32+-~-+n2:n(n+ )6( nt )fornZO.

Base case: it works for n = 0 since 0 = 0(0 + 1)(0 + 2)/6.

Inductive step. Suppose that the formula works for n. Then

(124224 +n)+(n+1)?=nn+1)2n+1)/6 +n*+2n+1
2n3 + 3n% 4+ 2n + 6n% + 12n + 6
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2. Prove that 13+ 23 +3%3+... 4+ n3 = <n(n2—|—)) for n > 0.
Base case: it works for n = 0.
Inductive step: suppose it works for n. Then
g 2 1% .
(B2 4+ 0¥+ (n+1)° = w+n3+3n2+3n+1
ot 4207 +n? 4+ 4n® 4+ 12n% 4+ 12n 4+ 4
N 4
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3. Provethat 1-1!4+2-21+---+n-nl=(n+1)!—-1forn>1.
Base case: it works for n = 1.
Inductive step: suppose it works for n. Then
-1 +2- 204+ 4n-a)+n+1)-(n+ =R+ -1+[n+2)- (n+1)! = (n+1)]
=(Mn+2)!-1



4. Find a closed form for "}'_,(—1)*k? and prove that it is correct.
The first few terms are —1,3, —6,10, —15, ..., so guess that the formula is (—1)"n(n + 1)/2.
Base case: The formula works for n = 1.

Inductive step: suppose that it works for n. Then

DCDRE =) (DM (1) (1)

k
=(-1)"n(n+1)/2+ (-1)"M(n® +2n + 1)
w120 +4n+2—n?—n

= (-1) ;
_ (_1)n+1n2 +3n+2
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5. For what integers is 2" > n? true? Prove it.
True for n = 0,n = 1, but also for n > 10.
Base case: 2'0 = 1024 > 1000 = 10°.
Inductive step: suppose that 2™ > n3. Then
2ntl = 9. 9n
=2"+2"
>n® 4+ n?
> n® + 10n?
>n®+3n2 +3n+1
= (n+1)°

The step n% +n3 > n3 + 10n? relied on the fact that n > 10.



From 2 to many

1.

. (Calculus) Suppose we know that -Lx = 1 and that for any functions f and g, (fg)’ = f'g+ fg

Given that ab = ba, prove that a™b = ba™ for all n > 1. (Original problem had a typo.)

Base case: a'b = ba' was given, so it works for n = 1.

Inductive step: if a™b = ba™, then a"*1b = a(a™b) = aba™ = baa™ = ba™*!.

Given that ab = ba, prove that a™b™ = b™a" for all n,m > 1 (let n be arbitrary, then use the previous
result and induction on m).

Base case: if m = 1 then a™b = ba™ was given by the result of the previous problem.

Inductive step: if a”b™ = b™a™ then a™b™ ! = a™b™b = b™a™b = b™ba" = b™Ha".

Given: if a =b (mod m) and ¢ =d (mod m) then a +c¢=0b+d (mod m). Prove: if a; = b; (mod m)
fori=1,2,...,n,then Y ' 1 a; =3 1, b; (modm).

Base case: When n = 2 the formula a + ¢ = b+ d (mod m) was already given.

Inductive step: Supposing the formula works for n, we get
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. Prove

that %x” =na™ ! for all n > 1.
Base case: when n =1, £zl =1=1-2°.

Inductive step: If %x” = na" !, then

d
£xn+1 _ ((E . xn)/
:$I'$n+($n)/-1’

n—1

=z" +nx T

=(n+1)a"

n

5. Prove: U A; = ﬁz
i=1

=1

Base case: When n =2 AU B = AN B is given by one of DeMorgan’s Laws.



Inductive step: Suppose the formula works for n. Then

n+1 n
U&:U&U%H
i=1 =1

n
=JAin4,
1=1

n
= (4n4A.
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Recursion

1. Define a sequence a,, by ag = 1, a; = 3 and a, = ap_1 + 2 - ap_o for n > 2. Find ag. Prove that
2n+2 + (71)71
an = —

ap | ap | az | az | aq | as | ag
1 3|5 |11]21]43 |85

Base case for proof by induction: The formula works for n = 0 and n = 1.

Inductive step: Suppose that the formula works for n AND n + 1. Then

(py2 = Ang1 + 2a,

2n+3 -1 n+1 2n+2 —_1)"
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2. 2n+3 + (_1)n
3

2n+4 + (_1)n+2
3

Note that this time we needed to use the formula for both a,.; and a,, so we needed to prove two
base cases.

2. Define a sequence a,, by ag =1, ap =2 -a,_1 + 1 if n > 1. Find a non-recursive formula for a,, and
prove that it is correct.
The sequence goes 1,3,7,15,31, ... guess that it is equal to 271! — 1.
Prove the base case: it works for n = 0.
Inductive step: If it works for n, then a, 11 =2-a, +1=2-(2"1 —1)+1 =272 241 =272 1.



. Prove: ged(fni1, fn) =1 for all n > 0.

Proof: ged(fo, f1) = ged(0,1) = 1 for the base case n = 0.

Inductive step: use the fact that ged(a, b) = ged(a — b,b). Then if the proposition holds for n, we have
ged(fn+2, fat1) = ged(favz = fat1s fat1) = ged(fn, fs1) = 1.

. Prove that f2 + f2 + -+ f2 = fufns1 for n > 1.

Base case: it works for n = 1 since f2 =1-1= f fo.

Inductive step: if the formula holds for n, then

P+ 54+ D+ i = fafast + fasifas
:fn+1(fn+fn+1)

= fos1fnie

. Prove that f1 + f3 + -+ + fan—1 = fon for n > 1. (Original problem had a typo.)
Base case: fi =1 = f; when n = 1.

Inductive step: if the formula holds for n, then

(fi+ fa+ -+ fon—1) + font1 = fon + font1
= font2

. Show that f,11fn_1— f2=(=1)" for n > 1.
Base case: when n =1, we have fafg — ff=0—1=(-1)L.

Inductive step: If the formula holds for n then

frnvafn — f3+1 = (fo+ fos1)fu — f72l+1
= f2+ farrfo — fon
= f’r% + fn-i—l(fn - fn-i-l)
= f2+ fas1(—faz1)
= *(fn-&-lfn—l - fﬁ)
— (-1
= (-1

. Prove that f, = (o™ — 8")/V/5, where a = (14 +/5)/2 and 8 = (1 —+/5)/2. (Hint: both « and j
satisfy the equation 2% = z + 1).

Proof: It holds for fy and f;, base cases n =0 and n = 1.
Inductive step: if it holds for n AND n + 1 then

fn+2 — fnJrl + fn
ot — ﬂn+1 a™ — ﬂn
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_a"+2—6"+2
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8.

10.

Prove that fro4n = fin—1fn + fmfnt+1. (fix n arbitrarily, then use induction on m)
Base case: when m = 1 the formula becomes f,, 11 = fofn + f1fn+1, which is true because fo = 0 and
fi=1

Inductive step: Suppose the formula holds for m. Then

f(m+1)+n = fm+(n+1)
= fm—1for1 + fmfoye
= fom—1foy1 + (fmfn+1 + fmfn)
= (fm—l + fm)fn-i—l + fmfn
= fmfn + fms1fns1
= f(m-&-l)—lfn + fim+1fn+1

Prove (now using induction on n) that f,,|fmn for all n > 1.
Base case: When n =1 this is just fi,|fm, which is clearly true.

Inductive step: suppose fm,|fmn. Then

fm(n+1) = fmntm
= fmn—lfm + fmnfm+1~

Since f,, and (by the inductive hypothesis) f,., are both divisible by f,, the linear combination (and
therefore fy,(n41)) is also divible by fi,.

Prove that ged(fom, frn) = facd(m,n)-
Let n = gm +r. Since fi,|fgm (from the previous problem), we know that

ng(fm7 fn) = ng(fm; fqurr)
= ng(fma fqm—lfr + fqur+1)
= ng(fma fqm—lfr)a

Then since fp,|fgm but ged(fom, fgm—1) = 1, we can conclude that ged(fim, fn) = ged(fm, fom-1fr) =
ged(fom, fr). This allows us to use a process similar to the Euclidean Algorithm and continue until we
hit the greatest common divisor.

In particular, this means that if p is a prime number, then f,, shares a common divisor with f,, if and
only if p|n (and if p|n then fp|f,). In particlar, we know that f3 = 2, so (since 3 is prime), the even
Fibonacci numbers will be precisely those of the form fs3; for k € Z.



