
Chapter 5.1: Induction
Monday, July 13

Fermat’s Little Theorem

Evaluate the following:

1. 216 (mod 5)

216 ≡ (24)4 ≡ 14 ≡ 1 (mod 5)

2. 332 (mod 7)

332 ≡ (34)8) ≡ 18 ≡ 1 (mod 5)

3. 277 (mod 19)

277 ≡ (218)4 · 25 ≡ 14 · 32 ≡ 13 (mod 19)

4. 218 (mod 15)

218 ≡ 1 (mod 3) and 218 ≡ 4 (mod 5), so solving the simultaneous equations (by whatever method
you like) gives 218 ≡ 4 (mod 15).

5. 225 (mod 21)

225 ≡ 2 (mod 3) and 225 ≡ 2 (mod 7), so solving the two equations gives 2 ≡ 2 (mod 21).

6. 2100 (mod 55)

2100 ≡ 1 (mod 5) and 2100 ≡ 1 (mod 11), so solving the two equations gives 2100 ≡ 1 (mod 55).

(Hard) A composite number n is called a Carmichael number bn−1 ≡ 1 (mod n) for every number b such
that gcd(b, n) = 1 (their existence is unfortunate, since it means that we cannot use FLT to tell for certain
whether a number is prime). Prove: There is one and only one Carmichael number of the form 3 ·p ·q, where
p and q are prime numbers.
We know that if n = 3pq is a Carmichael number and gcd(b, n) = 1 then

b3pq−1 ≡ 1 (mod 3pq)

b3pq−1 ≡ 1 (mod 3)

b3pq−1 ≡ 1 (mod p)

b3pq−1 ≡ 1 (mod q)

Using Fermat’s Little Theorem on the last three equations in turn gives us

2|3pq − 1

p− 1|3pq − 1

q − 1|3pq − 1
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The first just tells us that p and q must be odd. Then since 3pq− 1 = 3pq− 3q+ 3q− 1 = 3q(p− 1) + 3q− 1
(and similarly 3pq − 1 = 3p(q − 1) + 3p− 1), we can conclude

p− 1|3q − 1

q − 1|3p− 1

Suppose (without loss of generality) that p < q. Then since q − 1|3p − 1 < 3q − 1, we know that either
q − 1 = 3p − 1 or 2(q − 1) = 3p − 1. The first possibility would give q = 3p, contradicting the given that p
was prime. Therefore 2(q − 1) = 3p− 1.
We can then substitute this into the first statment: p−1|3q−1 = 3q−3+2 = 3

2 (2(q−1))+2 = 3
2 (3p−1)+2,

so (p − 1)| 92p + 1/2, or 2p − 2|9p + 1, or 2p − 2|9p + 1 − 4(2p − 2) = p + 9. Since 2p − 2|p + 9 means that
2p− 2 ≤ p+ 9, we must have p ≤ 11. Since p 6= 3, checking the other cases 5, 7, and 11 show that p = 11 is
the only option. Therefore q = 17, and the only Carmichael number of the form 3pq is 3 · 11 · 17 = 561.

Induction

1. Prove that 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
for n ≥ 0.

Base case: it works for n = 0 since 0 = 0(0 + 1)(0 + 2)/6.

Inductive step. Suppose that the formula works for n. Then

(12 + 22 + · · ·+ n2) + (n+ 1)2 = n(n+ 1)(2n+ 1)/6 + n2 + 2n+ 1

=
2n3 + 3n2 + 2n+ 6n2 + 12n+ 6

6

=
2n3 + 9n2 + 14n+ 6

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

2. Prove that 13 + 23 + 33 + · · ·+ n3 =

(
n(n+ 1)

2

)2

for n ≥ 0.

Base case: it works for n = 0.

Inductive step: suppose it works for n. Then

(13 + 23 + · · ·+ n3) + (n+ 1)3 =
n2(n+ 1)2

4
+ n3 + 3n2 + 3n+ 1

=
n4 + 2n3 + n2 + 4n3 + 12n2 + 12n+ 4

4

=
n4 + 6n3 + 13n2 + 12n+ 4

4

=
(n+ 1)2(n+ 2)2

4

3. Prove that 1 · 1! + 2 · 2! + · · ·+ n · n! = (n+ 1)!− 1 for n ≥ 1.

Base case: it works for n = 1.

Inductive step: suppose it works for n. Then

(1 · 1! + 2 · 2! + · · ·+ n · n!) + (n+ 1) · (n+ 1)! = (n+ 1)!− 1 + [(n+ 2) · (n+ 1)!− (n+ 1)!]

= (n+ 2)!− 1
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4. Find a closed form for
∑n

k=1(−1)kk2 and prove that it is correct.

The first few terms are −1, 3,−6, 10,−15, . . ., so guess that the formula is (−1)nn(n+ 1)/2.

Base case: The formula works for n = 1.

Inductive step: suppose that it works for n. Then

n+1∑
k=1

(−1)kk2 =

n∑
k=1

(−1)kk2 + (−1)n+1(n+ 1)2

= (−1)nn(n+ 1)/2 + (−1)n+1(n2 + 2n+ 1)

= (−1)n+1 2n2 + 4n+ 2− n2 − n
2

= (−1)n+1n
2 + 3n+ 2

2

= (−1)n+1 (n+ 1)(n+ 2)

2

5. For what integers is 2n ≥ n3 true? Prove it.

True for n = 0, n = 1, but also for n ≥ 10.

Base case: 210 = 1024 ≥ 1000 = 103.

Inductive step: suppose that 2n ≥ n3. Then

2n+1 = 2 · 2n

= 2n + 2n

≥ n3 + n3

≥ n3 + 10n2

≥ n3 + 3n2 + 3n+ 1

= (n+ 1)3

The step n3 + n3 ≥ n3 + 10n2 relied on the fact that n ≥ 10.
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From 2 to many

1. Given that ab = ba, prove that anb = ban for all n ≥ 1. (Original problem had a typo.)

Base case: a1b = ba1 was given, so it works for n = 1.

Inductive step: if anb = ban, then an+1b = a(anb) = aban = baan = ban+1.

2. Given that ab = ba, prove that anbm = bman for all n,m ≥ 1 (let n be arbitrary, then use the previous
result and induction on m).

Base case: if m = 1 then anb = ban was given by the result of the previous problem.

Inductive step: if anbm = bman then anbm+1 = anbmb = bmanb = bmban = bm+1an.

3. Given: if a ≡ b (mod m) and c ≡ d (mod m) then a+ c ≡ b+ d (mod m). Prove: if ai ≡ bi (mod m)
for i = 1, 2, . . . , n, then

∑n
i=1 ai ≡

∑n
i=1 bi (mod m).

Base case: When n = 2 the formula a+ c ≡ b+ d (mod m) was already given.

Inductive step: Supposing the formula works for n, we get

n+1∑
i=1

ai = (

n∑
i=1

ai) + an+1

≡
n∑

i=1

bi + bn+1

≡
n+1∑
i=1

bi

4. (Calculus) Suppose we know that d
dxx = 1 and that for any functions f and g, (fg)′ = f ′g+ fg′. Prove

that d
dxx

n = nxn−1 for all n ≥ 1.

Base case: when n = 1, d
dxx

1 = 1 = 1 · x0.

Inductive step: If d
dxx

n = nxn−1, then

d

dx
xn+1 = (x · xn)′

= x′ · xn + (xn)′ · x
= xn + nxn−1 · x
= (n+ 1)xn

5. Prove:

n⋃
i=1

Ai =

n⋂
i=1

Ai.

Base case: When n = 2 A ∪B = A ∩B is given by one of DeMorgan’s Laws.
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Inductive step: Suppose the formula works for n. Then

n+1⋃
i=1

Ai =

n⋃
i=1

Ai ∪An+1

=

n⋃
i=1

Ai ∩An+1

=

n⋂
i=1

Ai ∩An+1

=

n+1⋂
i=1

Ai

Recursion

1. Define a sequence an by a0 = 1, a1 = 3 and an = an−1 + 2 · an−2 for n ≥ 2. Find a6. Prove that

an =
2n+2 + (−1)n

3
.

a0 a1 a2 a3 a4 a5 a6
1 3 5 11 21 43 85

Base case for proof by induction: The formula works for n = 0 and n = 1.

Inductive step: Suppose that the formula works for n AND n+ 1. Then

an+2 = an+1 + 2an

=
2n+3 + (−1)n+1

3
+ 2 · 2n+2 + (−1)n

3

=
2 · 2n+3 + (−1)n

3

=
2n+4 + (−1)n+2

3

Note that this time we needed to use the formula for both an+1 and an, so we needed to prove two
base cases.

2. Define a sequence an by a0 = 1, an = 2 · an−1 + 1 if n ≥ 1. Find a non-recursive formula for an and
prove that it is correct.

The sequence goes 1, 3, 7, 15, 31, . . . guess that it is equal to 2n+1 − 1.

Prove the base case: it works for n = 0.

Inductive step: If it works for n, then an+1 = 2 · an + 1 = 2 · (2n+1− 1) + 1 = 2n+2− 2 + 1 = 2n+2− 1.
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3. Prove: gcd(fn+1, fn) = 1 for all n ≥ 0.

Proof: gcd(f0, f1) = gcd(0, 1) = 1 for the base case n = 0.

Inductive step: use the fact that gcd(a, b) = gcd(a− b, b). Then if the proposition holds for n, we have
gcd(fn+2, fn+1) = gcd(fn+2 − fn+1, fn+1) = gcd(fn, fn+1) = 1.

4. Prove that f21 + f22 + · · ·+ f2n = fnfn+1 for n ≥ 1.

Base case: it works for n = 1 since f21 = 1 · 1 = f1f2.

Inductive step: if the formula holds for n, then

(f21 + f22 + · · ·+ f2n) + f2n+1 = fnfn+1 + fn+1fn+1

= fn+1(fn + fn+1)

= fn+1fn+2

5. Prove that f1 + f3 + · · ·+ f2n−1 = f2n for n ≥ 1. (Original problem had a typo.)

Base case: f1 = 1 = f2 when n = 1.

Inductive step: if the formula holds for n, then

(f1 + f3 + · · ·+ f2n−1) + f2n+1 = f2n + f2n+1

= f2n+2

6. Show that fn+1fn−1 − f2n = (−1)n for n ≥ 1.

Base case: when n = 1, we have f2f0 − f21 = 0− 1 = (−1)1.

Inductive step: If the formula holds for n then

fn+2fn − f2n+1 = (fn + fn+1)fn − f2n+1

= f2n + fn+1fn − f2n+1

= f2n + fn+1(fn − fn+1)

= f2n + fn+1(−fn−1)

= −(fn+1fn−1 − f2n)

= −(−1)n

= (−1)n+1

7. Prove that fn = (αn − βn)/
√

5, where α = (1 +
√

5)/2 and β = (1 −
√

5)/2. (Hint: both α and β
satisfy the equation x2 = x+ 1).

Proof: It holds for f0 and f1, base cases n = 0 and n = 1.

Inductive step: if it holds for n AND n+ 1 then

fn+2 = fn+1 + fn

=
αn+1 − βn+1

√
5

+
αn − βn

√
5

=
αn(α+ 1)− βn(β + 1)√

5

=
αn+2 − βn+2

√
5
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8. Prove that fm+n = fm−1fn + fmfn+1. (fix n arbitrarily, then use induction on m)

Base case: when m = 1 the formula becomes fn+1 = f0fn + f1fn+1, which is true because f0 = 0 and
f1 = 1.

Inductive step: Suppose the formula holds for m. Then

f(m+1)+n = fm+(n+1)

= fm−1fn+1 + fmfn+2

= fm−1fn+1 + (fmfn+1 + fmfn)

= (fm−1 + fm)fn+1 + fmfn

= fmfn + fm+1fn+1

= f(m+1)−1fn + fm+1fn+1

9. Prove (now using induction on n) that fm|fmn for all n ≥ 1.

Base case: When n = 1 this is just fm|fm, which is clearly true.

Inductive step: suppose fm|fmn. Then

fm(n+1) = fmn+m

= fmn−1fm + fmnfm+1.

Since fm and (by the inductive hypothesis) fmn are both divisible by fm, the linear combination (and
therefore fm(n+1)) is also divible by fm.

10. Prove that gcd(fm, fn) = fgcd(m,n).

Let n = qm+ r. Since fm|fqm (from the previous problem), we know that

gcd(fm, fn) = gcd(fm, fqm+r)

= gcd(fm, fqm−1fr + fqmfr+1)

= gcd(fm, fqm−1fr),

Then since fm|fqm but gcd(fqm, fqm−1) = 1, we can conclude that gcd(fm, fn) = gcd(fm, fqm−1fr) =
gcd(fm, fr). This allows us to use a process similar to the Euclidean Algorithm and continue until we
hit the greatest common divisor.

In particular, this means that if p is a prime number, then fp shares a common divisor with fn if and
only if p|n (and if p|n then fp|fn). In particlar, we know that f3 = 2, so (since 3 is prime), the even
Fibonacci numbers will be precisely those of the form f3k for k ∈ Z.
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