Chapter 5.1: Induction
 Monday, July 13

Fermat's Little Theorem

Evaluate the following:

1. $2^{16}(\bmod 5)$

$$
2^{16} \equiv\left(2^{4}\right)^{4} \equiv 1^{4} \equiv 1 \quad(\bmod 5)
$$

2. $3^{32}(\bmod 7)$

$$
\left.3^{32} \equiv\left(3^{4}\right)^{8}\right) \equiv 1^{8} \equiv 1 \quad(\bmod 5)
$$

3. $2^{77}(\bmod 19)$

$$
2^{77} \equiv\left(2^{18}\right)^{4} \cdot 2^{5} \equiv 1^{4} \cdot 32 \equiv 13 \quad(\bmod 19)
$$

4. $2^{18}(\bmod 15)$
$2^{18} \equiv 1(\bmod 3)$ and $2^{18} \equiv 4(\bmod 5)$, so solving the simultaneous equations (by whatever method you like) gives $2^{18} \equiv 4(\bmod 15)$.
5. $2^{25}(\bmod 21)$
$2^{25} \equiv 2(\bmod 3)$ and $2^{25} \equiv 2(\bmod 7)$, so solving the two equations gives $2 \equiv 2(\bmod 21)$.
6. $2^{100}(\bmod 55)$
$2^{100} \equiv 1(\bmod 5)$ and $2^{100} \equiv 1(\bmod 11)$, so solving the two equations gives $2^{100} \equiv 1(\bmod 55)$.
(Hard) A composite number n is called a Carmichael number $b^{n-1} \equiv 1(\bmod n)$ for every number b such that $\operatorname{gcd}(b, n)=1$ (their existence is unfortunate, since it means that we cannot use FLT to tell for certain whether a number is prime). Prove: There is one and only one Carmichael number of the form $3 \cdot p \cdot q$, where p and q are prime numbers.
We know that if $n=3 p q$ is a Carmichael number and $\operatorname{gcd}(b, n)=1$ then

$$
\begin{aligned}
b^{3 p q-1} & \equiv 1 \quad \\
b^{3 p q-1} & \equiv 1 \\
& (\bmod 3 p q) \\
b^{3 p q-1} & \equiv 1 \quad \\
& (\bmod 3) \\
b^{3 p q-1} & \equiv 1 \quad
\end{aligned} \quad(\bmod q),
$$

Using Fermat's Little Theorem on the last three equations in turn gives us

$$
\begin{array}{r}
2 \mid 3 p q-1 \\
p-1 \mid 3 p q-1 \\
q-1 \mid 3 p q-1
\end{array}
$$

The first just tells us that p and q must be odd. Then since $3 p q-1=3 p q-3 q+3 q-1=3 q(p-1)+3 q-1$ (and similarly $3 p q-1=3 p(q-1)+3 p-1$), we can conclude

$$
\begin{gathered}
p-1 \mid 3 q-1 \\
q-1 \mid 3 p-1
\end{gathered}
$$

Suppose (without loss of generality) that $p<q$. Then since $q-1 \mid 3 p-1<3 q-1$, we know that either $q-1=3 p-1$ or $2(q-1)=3 p-1$. The first possibility would give $q=3 p$, contradicting the given that p was prime. Therefore $2(q-1)=3 p-1$.
We can then substitute this into the first statment: $p-1 \left\lvert\, 3 q-1=3 q-3+2=\frac{3}{2}(2(q-1))+2=\frac{3}{2}(3 p-1)+2\right.$, so $(p-1) \left\lvert\, \frac{9}{2} p+1 / 2\right.$, or $2 p-2 \mid 9 p+1$, or $2 p-2 \mid 9 p+1-4(2 p-2)=p+9$. Since $2 p-2 \mid p+9$ means that $2 p-2 \leq p+9$, we must have $p \leq 11$. Since $p \neq 3$, checking the other cases 5,7 , and 11 show that $p=11$ is the only option. Therefore $q=17$, and the only Carmichael number of the form $3 p q$ is $3 \cdot 11 \cdot 17=561$.

Induction

1. Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $n \geq 0$.

Base case: it works for $n=0$ since $0=0(0+1)(0+2) / 6$.
Inductive step. Suppose that the formula works for n. Then

$$
\begin{aligned}
\left(1^{2}+2^{2}+\cdots+n^{2}\right)+(n+1)^{2} & =n(n+1)(2 n+1) / 6+n^{2}+2 n+1 \\
& =\frac{2 n^{3}+3 n^{2}+2 n+6 n^{2}+12 n+6}{6} \\
& =\frac{2 n^{3}+9 n^{2}+14 n+6}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

2. Prove that $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for $n \geq 0$.

Base case: it works for $n=0$.
Inductive step: suppose it works for n. Then

$$
\begin{aligned}
\left(1^{3}+2^{3}+\cdots+n^{3}\right)+(n+1)^{3} & =\frac{n^{2}(n+1)^{2}}{4}+n^{3}+3 n^{2}+3 n+1 \\
& =\frac{n^{4}+2 n^{3}+n^{2}+4 n^{3}+12 n^{2}+12 n+4}{4} \\
& =\frac{n^{4}+6 n^{3}+13 n^{2}+12 n+4}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

3. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ for $n \geq 1$.

Base case: it works for $n=1$.
Inductive step: suppose it works for n. Then

$$
\begin{aligned}
(1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!)+(n+1) \cdot(n+1)! & =(n+1)!-1+[(n+2) \cdot(n+1)!-(n+1)!] \\
& =(n+2)!-1
\end{aligned}
$$

4. Find a closed form for $\sum_{k=1}^{n}(-1)^{k} k^{2}$ and prove that it is correct.

The first few terms are $-1,3,-6,10,-15, \ldots$, so guess that the formula is $(-1)^{n} n(n+1) / 2$.
Base case: The formula works for $n=1$.
Inductive step: suppose that it works for n. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1}(-1)^{k} k^{2} & =\sum_{k=1}^{n}(-1)^{k} k^{2}+(-1)^{n+1}(n+1)^{2} \\
& =(-1)^{n} n(n+1) / 2+(-1)^{n+1}\left(n^{2}+2 n+1\right) \\
& =(-1)^{n+1} \frac{2 n^{2}+4 n+2-n^{2}-n}{2} \\
& =(-1)^{n+1} \frac{n^{2}+3 n+2}{2} \\
& =(-1)^{n+1} \frac{(n+1)(n+2)}{2}
\end{aligned}
$$

5. For what integers is $2^{n} \geq n^{3}$ true? Prove it.

True for $n=0, n=1$, but also for $n \geq 10$.
Base case: $2^{10}=1024 \geq 1000=10^{3}$.
Inductive step: suppose that $2^{n} \geq n^{3}$. Then

$$
\begin{aligned}
2^{n+1} & =2 \cdot 2^{n} \\
& =2^{n}+2^{n} \\
& \geq n^{3}+n^{3} \\
& \geq n^{3}+10 n^{2} \\
& \geq n^{3}+3 n^{2}+3 n+1 \\
& =(n+1)^{3}
\end{aligned}
$$

The step $n^{3}+n^{3} \geq n^{3}+10 n^{2}$ relied on the fact that $n \geq 10$.

From 2 to many

1. Given that $a b=b a$, prove that $a^{n} b=b a^{n}$ for all $n \geq 1$. (Original problem had a typo.)

Base case: $a^{1} b=b a^{1}$ was given, so it works for $n=1$.
Inductive step: if $a^{n} b=b a^{n}$, then $a^{n+1} b=a\left(a^{n} b\right)=a b a^{n}=b a a^{n}=b a^{n+1}$.
2. Given that $a b=b a$, prove that $a^{n} b^{m}=b^{m} a^{n}$ for all $n, m \geq 1$ (let n be arbitrary, then use the previous result and induction on m).
Base case: if $m=1$ then $a^{n} b=b a^{n}$ was given by the result of the previous problem.
Inductive step: if $a^{n} b^{m}=b^{m} a^{n}$ then $a^{n} b^{m+1}=a^{n} b^{m} b=b^{m} a^{n} b=b^{m} b a^{n}=b^{m+1} a^{n}$.
3. Given: if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a+c \equiv b+d(\bmod m)$. Prove: if $a_{i} \equiv b_{i}(\bmod m)$ for $i=1,2, \ldots, n$, then $\sum_{i=1}^{n} a_{i} \equiv \sum_{i=1}^{n} b_{i}(\bmod m)$.
Base case: When $n=2$ the formula $a+c \equiv b+d(\bmod m)$ was already given.
Inductive step: Supposing the formula works for n , we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} a_{i} & =\left(\sum_{i=1}^{n} a_{i}\right)+a_{n+1} \\
& \equiv \sum_{i=1}^{n} b_{i}+b_{n+1} \\
& \equiv \sum_{i=1}^{n+1} b_{i}
\end{aligned}
$$

4. (Calculus) Suppose we know that $\frac{d}{d x} x=1$ and that for any functions f and $\mathrm{g},(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Prove that $\frac{d}{d x} x^{n}=n x^{n-1}$ for all $n \geq 1$.
Base case: when $n=1, \frac{d}{d x} x^{1}=1=1 \cdot x^{0}$.
Inductive step: If $\frac{d}{d x} x^{n}=n x^{n-1}$, then

$$
\begin{aligned}
\frac{d}{d x} x^{n+1} & =\left(x \cdot x^{n}\right)^{\prime} \\
& =x^{\prime} \cdot x^{n}+\left(x^{n}\right)^{\prime} \cdot x \\
& =x^{n}+n x^{n-1} \cdot x \\
& =(n+1) x^{n}
\end{aligned}
$$

5. Prove: $\overline{\bigcup_{i=1}^{n} A_{i}}=\bigcap_{i=1}^{n} \overline{A_{i}}$.

Base case: When $n=2 \overline{A \cup B}=\bar{A} \cap \bar{B}$ is given by one of DeMorgan's Laws.

Inductive step: Suppose the formula works for n. Then

$$
\begin{aligned}
\overline{\bigcup_{i=1}^{n+1} A_{i}} & =\bigcup_{i=1}^{n} A_{i} \cup A_{n+1} \\
& =\bigcup_{i=1}^{n} A_{i} \cap \overline{A_{n+1}} \\
& =\bigcap_{i=1}^{n} \overline{A_{i}} \cap \overline{A_{n+1}} \\
& =\bigcap_{i=1}^{n+1} \overline{A_{i}}
\end{aligned}
$$

Recursion

1. Define a sequence a_{n} by $a_{0}=1, a_{1}=3$ and $a_{n}=a_{n-1}+2 \cdot a_{n-2}$ for $n \geq 2$. Find a_{6}. Prove that $a_{n}=\frac{2^{n+2}+(-1)^{n}}{3}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
1	3	5	11	21	43	85

Base case for proof by induction: The formula works for $n=0$ and $n=1$.
Inductive step: Suppose that the formula works for n AND $n+1$. Then

$$
\begin{aligned}
a_{n+2} & =a_{n+1}+2 a_{n} \\
& =\frac{2^{n+3}+(-1)^{n+1}}{3}+2 \cdot \frac{2^{n+2}+(-1)^{n}}{3} \\
& =\frac{2 \cdot 2^{n+3}+(-1)^{n}}{3} \\
& =\frac{2^{n+4}+(-1)^{n+2}}{3}
\end{aligned}
$$

Note that this time we needed to use the formula for both a_{n+1} and a_{n}, so we needed to prove two base cases.
2. Define a sequence a_{n} by $a_{0}=1, a_{n}=2 \cdot a_{n-1}+1$ if $n \geq 1$. Find a non-recursive formula for a_{n} and prove that it is correct.
The sequence goes $1,3,7,15,31, \ldots$ guess that it is equal to $2^{n+1}-1$.
Prove the base case: it works for $n=0$.
Inductive step: If it works for n, then $a_{n+1}=2 \cdot a_{n}+1=2 \cdot\left(2^{n+1}-1\right)+1=2^{n+2}-2+1=2^{n+2}-1$.
3. Prove: $\operatorname{gcd}\left(f_{n+1}, f_{n}\right)=1$ for all $n \geq 0$.

Proof: $\operatorname{gcd}\left(f_{0}, f_{1}\right)=\operatorname{gcd}(0,1)=1$ for the base case $n=0$.
Inductive step: use the fact that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$. Then if the proposition holds for n, we have $\operatorname{gcd}\left(f_{n+2}, f_{n+1}\right)=\operatorname{gcd}\left(f_{n+2}-f_{n+1}, f_{n+1}\right)=\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1$.
4. Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ for $n \geq 1$.

Base case: it works for $n=1$ since $f_{1}^{2}=1 \cdot 1=f_{1} f_{2}$.
Inductive step: if the formula holds for n, then

$$
\begin{aligned}
\left(f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}\right)+f_{n+1}^{2} & =f_{n} f_{n+1}+f_{n+1} f_{n+1} \\
& =f_{n+1}\left(f_{n}+f_{n+1}\right) \\
& =f_{n+1} f_{n+2}
\end{aligned}
$$

5. Prove that $f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}$ for $n \geq 1$. (Original problem had a typo.)

Base case: $f_{1}=1=f_{2}$ when $n=1$.
Inductive step: if the formula holds for n, then

$$
\begin{aligned}
\left(f_{1}+f_{3}+\cdots+f_{2 n-1}\right)+f_{2 n+1} & =f_{2 n}+f_{2 n+1} \\
& =f_{2 n+2}
\end{aligned}
$$

6. Show that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for $n \geq 1$.

Base case: when $n=1$, we have $f_{2} f_{0}-f_{1}^{2}=0-1=(-1)^{1}$.
Inductive step: If the formula holds for n then

$$
\begin{aligned}
f_{n+2} f_{n}-f_{n+1}^{2} & =\left(f_{n}+f_{n+1}\right) f_{n}-f_{n+1}^{2} \\
& =f_{n}^{2}+f_{n+1} f_{n}-f_{n+1}^{2} \\
& =f_{n}^{2}+f_{n+1}\left(f_{n}-f_{n+1}\right) \\
& =f_{n}^{2}+f_{n+1}\left(-f_{n-1}\right) \\
& =-\left(f_{n+1} f_{n-1}-f_{n}^{2}\right) \\
& =-(-1)^{n} \\
& =(-1)^{n+1}
\end{aligned}
$$

7. Prove that $f_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. (Hint: both α and β satisfy the equation $x^{2}=x+1$).
Proof: It holds for f_{0} and f_{1}, base cases $n=0$ and $n=1$.
Inductive step: if it holds for n AND $n+1$ then

$$
\begin{aligned}
f_{n+2} & =f_{n+1}+f_{n} \\
& =\frac{\alpha^{n+1}-\beta^{n+1}}{\sqrt{5}}+\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}} \\
& =\frac{\alpha^{n}(\alpha+1)-\beta^{n}(\beta+1)}{\sqrt{5}} \\
& =\frac{\alpha^{n+2}-\beta^{n+2}}{\sqrt{5}}
\end{aligned}
$$

8. Prove that $f_{m+n}=f_{m-1} f_{n}+f_{m} f_{n+1}$. (fix n arbitrarily, then use induction on m)

Base case: when $m=1$ the formula becomes $f_{n+1}=f_{0} f_{n}+f_{1} f_{n+1}$, which is true because $f_{0}=0$ and $f_{1}=1$.
Inductive step: Suppose the formula holds for m. Then

$$
\begin{aligned}
f_{(m+1)+n} & =f_{m+(n+1)} \\
& =f_{m-1} f_{n+1}+f_{m} f_{n+2} \\
& =f_{m-1} f_{n+1}+\left(f_{m} f_{n+1}+f_{m} f_{n}\right) \\
& =\left(f_{m-1}+f_{m}\right) f_{n+1}+f_{m} f_{n} \\
& =f_{m} f_{n}+f_{m+1} f_{n+1} \\
& =f_{(m+1)-1} f_{n}+f_{m+1} f_{n+1}
\end{aligned}
$$

9. Prove (now using induction on n) that $f_{m} \mid f_{m n}$ for all $n \geq 1$.

Base case: When $n=1$ this is just $f_{m} \mid f_{m}$, which is clearly true.
Inductive step: suppose $f_{m} \mid f_{m n}$. Then

$$
\begin{aligned}
f_{m(n+1)} & =f_{m n+m} \\
& =f_{m n-1} f_{m}+f_{m n} f_{m+1}
\end{aligned}
$$

Since f_{m} and (by the inductive hypothesis) $f_{m n}$ are both divisible by f_{m}, the linear combination (and therefore $\left.f_{m(n+1)}\right)$ is also divible by f_{m}.
10. Prove that $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}$.

Let $n=q m+r$. Since $f_{m} \mid f_{q m}$ (from the previous problem), we know that

$$
\begin{aligned}
\operatorname{gcd}\left(f_{m}, f_{n}\right) & =\operatorname{gcd}\left(f_{m}, f_{q m+r}\right) \\
& =\operatorname{gcd}\left(f_{m}, f_{q m-1} f_{r}+f_{q m} f_{r+1}\right) \\
& =\operatorname{gcd}\left(f_{m}, f_{q m-1} f_{r}\right)
\end{aligned}
$$

Then since $f_{m} \mid f_{q m}$ but $\operatorname{gcd}\left(f_{q m}, f_{q m-1}\right)=1$, we can conclude that $\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{m}, f_{q m-1} f_{r}\right)=$ $\operatorname{gcd}\left(f_{m}, f_{r}\right)$. This allows us to use a process similar to the Euclidean Algorithm and continue until we hit the greatest common divisor.

In particular, this means that if p is a prime number, then f_{p} shares a common divisor with f_{n} if and only if $p \mid n$ (and if $p \mid n$ then $f_{p} \mid f_{n}$). In particlar, we know that $f_{3}=2$, so (since 3 is prime), the even Fibonacci numbers will be precisely those of the form $f_{3 k}$ for $k \in \mathbb{Z}$.

