
Chapter 4.4: Systems of Congruences
Friday, July 10

Linear congruences

Find all solutions:

1. 7n ≡ 1 (mod 19)

19− 2 · 7 = 5

7− 5 = 2

5− 2 · 2 = 1

5− 2 · (7− 5) = 1

3 · 5− 2 · 7 = 1

3 · (19− 2 · 7)− 2 · 7 = 1

3 · 19− 8 · 7 = 1

−8 · 7 = 1 (mod 19)

11 · 7 = 1 (mod 19)

2. 8n ≡ 3 (mod 23)

23− 2 · 8 = 7

8− 7 = 1

8− (23− 2 · 8) = 1

3 · 8− 23 = 1

3 · 8 ≡ 1 (mod 23)

9 · 8 ≡ 3 (mod 23)

3. 5n ≡ 6 (mod 11)

Try this with some trial and error:

5 · 2 ≡ 10 (mod 11)

5 · 2 ≡ −1 (mod 11)

5 · 10 ≡ −5 (mod 11)

5 · 10 ≡ −6 (mod 11)

4. 7n ≡ 4 (mod 19)

From before: 11 · 7 ≡ 1 (mod 19), so 44 · 7 ≡ 4 (mod 19). Then 44 mod 19 = 6, so 6 · 7 ≡ 4 (mod 19).

5. 19n ≡ 1 (mod 7)

From before: 3 · 19− 8 · 7 = 1, so 19 · 3 ≡ 1 (mod 7).

6. 8n ≡ 8 (mod 31)

31 is prime, so 8n ≡ 8 (mod 31)⇔ n ≡ 1 (mod 31).
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7. 8n ≡ 18 (mod 24)

8 and 24 are both divisible by 8 but 18 is not. The system has no solutions.

8. 7n ≡ 18 (mod 35)

7 and 35 are both divisible by 7 but 18 is not. No solutions.

9. 7n ≡ 21 (mod 35)

All numbers are divisible by 7, so divide by 7 all around to get n ≡ 3 (mod 5). Mod 35, the solutions
are n = 3, 8, 13, 18, 23, 28, 33.

10. 3n ≡ 9 (mod 15)

Divide by 3 to get n ≡ 3 (mod 5). mod 15, the solutions are n = 3, 8, 13.

11. 15n ≡ 13 (mod 25)

15 and 25 are divisible by 5 but 13 is not. No solutions.

12. 15n ≡ 20 (mod 25)

Divide by 5 to get 3n ≡ 4 (mod 5), which has the solution n ≡ 3 (mod 5). Mod 25, the solutions are
n = 3, 8, 13, 18, 23.

Chinese Remainder Theorem

Decide whether the system has a solution. If it does, find it.

1. x ≡ 3 (mod 8), x ≡ 1 (mod 7)

Try x = 8a+7b. mod 8, we get 3 ≡ x ≡ 7b (mod 8), and solving gives b = 5. mod 7, we get 1 ≡ x ≡ 8a
(mod 7), so a ≡ 1 (mod 7). Therefore one solution is x = 8 + 7 · 5 = 43.

2. x ≡ 2 (mod 5), x ≡ 3 (mod 13)

Try x = 5a + 13b. mod 5, we get 2 ≡ x ≡ 13b ≡ 3b (mod 5), so b = 4 is a solution. mod 13, we get
3 ≡ x ≡ 5a (mod 13) with a = 11 as a solution. Therefore one solution is 11 · 5 + 4 · 13 = 107, which
is equivalent to 42 (mod 65).

3. x ≡ 7 (mod 6), x ≡ 4 (mod 8)

The first equation suggests that x is odd but the second requires x to be even. No solutions.

4. x ≡ 1 (mod 6), x ≡ 5 (mod 8)

Since gcd(6, 8) = 2 but both equations give x ≡ 1 (mod 2), the equations are compatible. x must be
odd, so say x = 2k + 1. This leads to the equations 2k ≡ 0 (mod 6) and 2k ≡ 4 (mod 8), and dividing
by 2 gives k ≡ 0 (mod 3) and k ≡ 2 (mod 4), with the solution k = 6. Thus x = 2k+1 = 2 ·6+1 = 13
is a solution (and the only solution mod 24).

5. x ≡ 8 (mod 15), x ≡ 3 (mod 10), x ≡ 1 (mod 6)

The first equation implies x ≡ 2 (mod 3) but the second requires that x ≡ 1 (mod 3).

6. x ≡ 2 (mod 3), x ≡ 5 (mod 7), x ≡ 3 (mod 11)

Try a solution of the form x = 3 · 7 · a+ 3 · 11 · b+ 7 · 11 · c. Taking the remainders mod 3, 7, and 11 in
turn gives the three equations 2 ≡ 77c ≡ 2c (mod 3) (so c = 1), 5 ≡ 33 · b ≡ 5 · b (mod 7) (so b = 1),
and 3 ≡ 21 · a ≡ −a (mod 11) (so a = -3).

One solution is therefore x = −3 ·21+1 ·33+1 ·77 = 47. This solution is also unique mod 3 ·7 ·11 = 231.
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Decide whether the system has a solution (and if it does, find all solutions) by solving the system for each
prime factor separately.

1. n2 ≡ 11 (mod 35)

Working over each prime factor separately gives n2 ≡ 1 (mod 5) and n2 ≡ 4 (mod 7), so n = ±1
(mod 5) and n = ±2 (mod 7).

Finding all solutions using the Chinese Remainder Theorem would be a real pain, so we’ll go by brute
force: look at all the numbers that are ±2 (mod 7) and see which ones are also ±1 mod 5 (that is, end
in a 1, 4, 6, or 9):

The options (mod 35) are n = 2, 5, 9, 12, 16, 19, 23, 26, 30, 33. Of these, the ones that work mod 5 are
9, 16, 19, and 26.

2. n2 ≡ 12 (mod 15)

Get the equations n2 ≡ 0 (mod 3) and n2 ≡ 2 (mod 5). . . the second equation has no solutions, so
there are no solutions to n2 ≡ 12 (mod 15).

3. n2 ≡ 15 (mod 77)

Get the equations n2 ≡ 1 (mod 7) and n2 ≡ 4 (mod 11), so n = ±1 mod 7 and n = ±2 mod 11. Look
at the ones that work mod 11 and then filter out to see which work for 7:

The options are n = 2, 9, 13, 20, 24, 31, 35, 42, 46, 53, 57, 64, 68, 75. Of these, 13, 20, 57, and 64 are
±1 mod 7. These are the four solutions.

Note: 13 + 64 = 20 + 57 = 77, so these solutions again come in pairs. (That is, if n2 ≡ 15 (mod 77)
then (−n)2 ≡ 15 (mod 77).)

4. n2 ≡ 5 (mod 33)

This leads to the equation n2 ≡ 2 (mod 3), which has no solutions.

Show that if p and q are primes with p, q > 2. then n2 ≡ 1 (mod pq) has four distinct solutions.
Use the Chinese Remainder Theorem on n ≡ ±1 (mod p), n ≡ ±1 (mod q).

Fermat’s Little Theorem

Evaluate:

1. 5100 (mod 7)

56 ≡ 1 (mod 7), so 5100 ≡ 54 ≡ (−2)4 ≡ 16 ≡ 2 (mod 7).

2. 332 (mod 5)

34 ≡ 1 (mod 5) so 332 ≡ 1 (mod 5).

3. 1773 (mod 19)

1718 ≡ 1 (mod 19), so 1773 ≡ 17 (mod 19).
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4. 832 (mod 35)

We cannot use Fermat’s Little Theorem directly, but we can solve mod 5 and mod 7 separately. 84 ≡ 1
(mod 5), so 832 ≡ 1 (mod 5). Then 8 ≡ 1 (mod 7) so 832 ≡ 1 (mod 7).

If x ≡ 1 (mod 5) and x ≡ 1 (mod 7) then x ≡ 1 (mod 35) (1 is a solution mod 35, and by CRT is the
unique solution). Therefore 832 ≡ 1 (mod 35)

5. 820 (mod 15)

8 ≡ (−1) (mod 3) so 820 ≡ 1 (mod 3). 84 ≡ 1 (mod 5) so 820 ≡ 1 (mod 5). Putting the two together,
820 ≡ 1 (mod 15).

6. 1537 (mod 21)

15 is divisible by 3 so 1537 ≡ 0 (mod 3). 15 is 1 mod 7 so 1537 ≡ 1 (mod 7). Therefore 1537 ≡ 15
(mod 21).

Show that n2 ≡ −1 (mod 103) has no solutions.
FLT says that if n 6= 0 (mod 103) then n102 ≡ 1 (mod 1)03. But if n2 ≡ −1 then n4 ≡ 1, so n100 ≡ 1
(mod 103). So n100 ≡ n102 (mod 103) and so n2 ≡ 1 (mod 103). Therefore there are no solutions to n2 ≡ −1
(mod 103).

Use Fermat’s Little Theorem with base n = 2 to prove that 9 is not prime.
28 ≡ 44 ≡ 162 ≡ (−2)2 ≡ 4 6= 1 (mod 9).

Use Wilson’s Theorem to show that 7 is prime.
6! = 120 = 119 + 1 = 17 · 7 + 1 ≡ 1 (mod 7), so 7 is prime.

4


