Chapter 4.4: Systems of Congruences
 Friday, July 10

Linear congruences

Find all solutions:

1. $7 n \equiv 1(\bmod 19)$

$$
\begin{aligned}
19-2 \cdot 7 & =5 \\
7-5 & =2 \\
5-2 \cdot 2 & =1 \\
5-2 \cdot(7-5) & =1 \\
3 \cdot 5-2 \cdot 7 & =1 \\
3 \cdot(19-2 \cdot 7)-2 \cdot 7 & =1 \\
3 \cdot 19-8 \cdot 7 & =1 \\
-8 \cdot 7 & =1 \quad(\bmod 19) \\
11 \cdot 7 & =1 \quad(\bmod 19)
\end{aligned}
$$

2. $8 n \equiv 3(\bmod 23)$

$$
\begin{aligned}
23-2 \cdot 8 & =7 \\
8-7 & =1 \\
8-(23-2 \cdot 8) & =1 \\
3 \cdot 8-23 & =1 \\
3 \cdot 8 & \equiv 1 \quad(\bmod 23) \\
9 \cdot 8 & \equiv 3 \quad(\bmod 23)
\end{aligned}
$$

3. $5 n \equiv 6(\bmod 11)$

Try this with some trial and error:

$$
\begin{aligned}
& 5 \cdot 2 \equiv 10 \\
& 5 \cdot 2(\bmod 11) \\
& 5 \cdot 10 \equiv-5 \quad(\bmod 11) \\
& 5 \cdot 10 \equiv-6 \quad(\bmod 11) \\
&(\bmod 11)
\end{aligned}
$$

4. $7 n \equiv 4(\bmod 19)$

From before: $11 \cdot 7 \equiv 1(\bmod 19)$, so $44 \cdot 7 \equiv 4(\bmod 19)$. Then $44 \bmod 19=6$, so $6 \cdot 7 \equiv 4(\bmod 19)$.
5. $19 n \equiv 1(\bmod 7)$

From before: $3 \cdot 19-8 \cdot 7=1$, so $19 \cdot 3 \equiv 1(\bmod 7)$.
6. $8 n \equiv 8(\bmod 31)$

31 is prime, so $8 n \equiv 8(\bmod 31) \Leftrightarrow n \equiv 1(\bmod 31)$.
7. $8 n \equiv 18(\bmod 24)$

8 and 24 are both divisible by 8 but 18 is not. The system has no solutions.
8. $7 n \equiv 18(\bmod 35)$

7 and 35 are both divisible by 7 but 18 is not. No solutions.
9. $7 n \equiv 21(\bmod 35)$

All numbers are divisible by 7 , so divide by 7 all around to get $n \equiv 3(\bmod 5)$. $\operatorname{Mod} 35$, the solutions are $n=3,8,13,18,23,28,33$.
10. $3 n \equiv 9(\bmod 15)$

Divide by 3 to get $n \equiv 3(\bmod 5) . \bmod 15$, the solutions are $n=3,8,13$.
11. $15 n \equiv 13(\bmod 25)$

15 and 25 are divisible by 5 but 13 is not. No solutions.
12. $15 n \equiv 20(\bmod 25)$

Divide by 5 to get $3 n \equiv 4(\bmod 5)$, which has the solution $n \equiv 3(\bmod 5)$. Mod 25 , the solutions are $n=3,8,13,18,23$.

Chinese Remainder Theorem

Decide whether the system has a solution. If it does, find it.

1. $x \equiv 3(\bmod 8), x \equiv 1(\bmod 7)$

Try $x=8 a+7 b . \bmod 8$, we get $3 \equiv x \equiv 7 b(\bmod 8)$, and solving gives $b=5 . \bmod 7$, we get $1 \equiv x \equiv 8 a$ $(\bmod 7)$, so $a \equiv 1(\bmod 7)$. Therefore one solution is $x=8+7 \cdot 5=43$.
2. $x \equiv 2(\bmod 5), x \equiv 3(\bmod 13)$

Try $x=5 a+13 b . \bmod 5$, we get $2 \equiv x \equiv 13 b \equiv 3 b(\bmod 5)$, so $b=4$ is a solution. $\bmod 13$, we get $3 \equiv x \equiv 5 a(\bmod 13)$ with $a=11$ as a solution. Therefore one solution is $11 \cdot 5+4 \cdot 13=107$, which is equivalent to $42(\bmod 65)$.
3. $x \equiv 7(\bmod 6), x \equiv 4(\bmod 8)$

The first equation suggests that x is odd but the second requires x to be even. No solutions.
4. $x \equiv 1(\bmod 6), x \equiv 5(\bmod 8)$

Since $\operatorname{gcd}(6,8)=2$ but both equations give $x \equiv 1(\bmod 2)$, the equations are compatible. x must be odd, so say $x=2 k+1$. This leads to the equations $2 k \equiv 0(\bmod 6)$ and $2 k \equiv 4(\bmod 8)$, and dividing by 2 gives $k \equiv 0(\bmod 3)$ and $k \equiv 2(\bmod 4)$, with the solution $k=6$. Thus $x=2 k+1=2 \cdot 6+1=13$ is a solution (and the only solution $\bmod 24$).
5. $x \equiv 8(\bmod 15), x \equiv 3(\bmod 10), x \equiv 1(\bmod 6)$

The first equation implies $x \equiv 2(\bmod 3)$ but the second requires that $x \equiv 1(\bmod 3)$.
6. $x \equiv 2(\bmod 3), x \equiv 5(\bmod 7), x \equiv 3(\bmod 11)$

Try a solution of the form $x=3 \cdot 7 \cdot a+3 \cdot 11 \cdot b+7 \cdot 11 \cdot c$. Taking the remainders mod 3,7 , and 11 in turn gives the three equations $2 \equiv 77 c \equiv 2 c(\bmod 3)(\mathrm{soc}=1), 5 \equiv 33 \cdot b \equiv 5 \cdot b(\bmod 7)(\mathrm{so} \mathrm{b}=1)$, and $3 \equiv 21 \cdot a \equiv-a(\bmod 11)($ so $\mathrm{a}=-3)$.
One solution is therefore $x=-3 \cdot 21+1 \cdot 33+1 \cdot 77=47$. This solution is also unique $\bmod 3 \cdot 7 \cdot 11=231$.

Decide whether the system has a solution (and if it does, find all solutions) by solving the system for each prime factor separately.

1. $n^{2} \equiv 11(\bmod 35)$

Working over each prime factor separately gives $n^{2} \equiv 1(\bmod 5)$ and $n^{2} \equiv 4(\bmod 7)$, so $n= \pm 1$ $(\bmod 5)$ and $n= \pm 2(\bmod 7)$.

Finding all solutions using the Chinese Remainder Theorem would be a real pain, so we'll go by brute force: look at all the numbers that are $\pm 2(\bmod 7)$ and see which ones are also $\pm 1 \bmod 5$ (that is, end in a $1,4,6$, or 9$)$:
The options $(\bmod 35)$ are $n=2,5,9,12,16,19,23,26,30,33$. Of these, the ones that work mod 5 are $9,16,19$, and 26 .
2. $n^{2} \equiv 12(\bmod 15)$

Get the equations $n^{2} \equiv 0(\bmod 3)$ and $n^{2} \equiv 2(\bmod 5) \ldots$ the second equation has no solutions, so there are no solutions to $n^{2} \equiv 12(\bmod 15)$.
3. $n^{2} \equiv 15(\bmod 77)$

Get the equations $n^{2} \equiv 1(\bmod 7)$ and $n^{2} \equiv 4(\bmod 11)$, so $n= \pm 1 \bmod 7$ and $n= \pm 2 \bmod 11$. Look at the ones that work mod 11 and then filter out to see which work for 7 :

The options are $\mathrm{n}=2,9,13,20,24,31,35,42,46,53,57,64,68,75$. Of these, $13,20,57$, and 64 are $\pm 1 \bmod 7$. These are the four solutions.
Note: $13+64=20+57=77$, so these solutions again come in pairs. (That is, if $n^{2} \equiv 15(\bmod 77)$ then $(-n)^{2} \equiv 15(\bmod 77)$.)
4. $n^{2} \equiv 5(\bmod 33)$

This leads to the equation $n^{2} \equiv 2(\bmod 3)$, which has no solutions.
Show that if p and q are primes with $p, q>2$. then $n^{2} \equiv 1(\bmod p q)$ has four distinct solutions.
Use the Chinese Remainder Theorem on $n \equiv \pm 1(\bmod p), n \equiv \pm 1(\bmod q)$.

Fermat's Little Theorem

Evaluate:

1. $5^{100}(\bmod 7)$
$5^{6} \equiv 1(\bmod 7)$, so $5^{100} \equiv 5^{4} \equiv(-2)^{4} \equiv 16 \equiv 2(\bmod 7)$.
2. $3^{32}(\bmod 5)$
$3^{4} \equiv 1(\bmod 5)$ so $3^{32} \equiv 1(\bmod 5)$.
3. $17^{73}(\bmod 19)$
$17^{18} \equiv 1(\bmod 19)$, so $17^{73} \equiv 17(\bmod 19)$.
4. $8^{32}(\bmod 35)$

We cannot use Fermat's Little Theorem directly, but we can solve mod 5 and $\bmod 7$ separately. $8^{4} \equiv 1$ $(\bmod 5)$, so $8^{32} \equiv 1(\bmod 5)$. Then $8 \equiv 1(\bmod 7)$ so $8^{32} \equiv 1(\bmod 7)$.
If $x \equiv 1(\bmod 5)$ and $x \equiv 1(\bmod 7)$ then $x \equiv 1(\bmod 35)(1$ is a solution $\bmod 35$, and by CRT is the unique solution). Therefore $8^{32} \equiv 1(\bmod 35)$
5. $8^{20}(\bmod 15)$
$8 \equiv(-1)(\bmod 3)$ so $8^{20} \equiv 1(\bmod 3) .8^{4} \equiv 1(\bmod 5)$ so $8^{20} \equiv 1(\bmod 5)$. Putting the two together, $8^{20} \equiv 1(\bmod 15)$.
6. $15^{37}(\bmod 21)$

15 is divisible by 3 so $15^{37} \equiv 0(\bmod 3)$. 15 is $1 \bmod 7$ so $15^{37} \equiv 1(\bmod 7)$. Therefore $15^{37} \equiv 15$ $(\bmod 21)$.

Show that $n^{2} \equiv-1(\bmod 103)$ has no solutions.
FLT says that if $n \neq 0(\bmod 103)$ then $n^{102} \equiv 1(\bmod 1) 03$. But if $n^{2} \equiv-1$ then $n^{4} \equiv 1$, so $n^{100} \equiv 1$ $(\bmod 103)$. So $n^{100} \equiv n^{102}(\bmod 103)$ and so $n^{2} \equiv 1(\bmod 103)$. Therefore there are no solutions to $n^{2} \equiv-1$ $(\bmod 103)$.

Use Fermat's Little Theorem with base $n=2$ to prove that 9 is not prime. $2^{8} \equiv 4^{4} \equiv 16^{2} \equiv(-2)^{2} \equiv 4 \neq 1(\bmod 9)$.

Use Wilson's Theorem to show that 7 is prime.
$6!=120=119+1=17 \cdot 7+1 \equiv 1(\bmod 7)$, so 7 is prime.

