Chapter 4.4: Systems of Congruences

Friday, July 10

Linear congruences
Find all solutions:

1. Tn =1 (mod 19)

19-2-7=5
7T—-5=2
5—2-2=1
5-2.(T—5) =1
3:5—-2-7=1
3.(19-2.7)-2-7=1
3-19-8-7=1
—8:-7=1 (mod 19)
11-7=1 (mod 19)

2. 8n =3 (mod 23)

23-2.8=7
8—7=1
8—(23-2-8)=1
3.8-23=1

3-8=1 (mod 23)
9-8=3 (mod 23)

3. 5n =6 (mod 11)

Try this with some trial and error:

5-2=10 (mod 11)
5-2=-1 (mod 11)
5-10=-5 (mod 11)
5-10=—-6 (mod 11)

4. Tn =4 (mod 19)
From before: 11-7=1 (mod 19),s044-7=4 (mod 19). Then 44 mod 19 = 6, s0 6-7 =4 (mod 19).

5. 19n =1 (mod 7)
From before: 3-19-8-7=1,5019-3=1 (mod 7).

6. 8n =8 (mod 31)
31 is prime, so 8n = 8 (mod 31) & n =1 (mod 31).



7. 8n = 18 (mod 24)
8 and 24 are both divisible by 8 but 18 is not. The system has no solutions.

8. Tn =18 (mod 35)
7 and 35 are both divisible by 7 but 18 is not. No solutions.

9. 7n =21 (mod 35)
All numbers are divisible by 7, so divide by 7 all around to get n = 3 (mod 5). Mod 35, the solutions
are n = 3,8,13, 18,23, 28, 33.
10. 3n =9 (mod 15)
Divide by 3 to get n =3 (mod 5). mod 15, the solutions are n = 3,8, 13.

11. 15n = 13 (mod 25)
15 and 25 are divisible by 5 but 13 is not. No solutions.

12. 15n =20 (mod 25)

Divide by 5 to get 3n =4 (mod 5), which has the solution n =3 (mod 5). Mod 25, the solutions are
n=3,8,13,18,23.

Chinese Remainder Theorem

Decide whether the system has a solution. If it does, find it.

1. =3 (mod 8), z =1 (mod 7)
Try = 8a+7b. mod 8, we get 3 =z = 7b (mod 8), and solving gives b = 5. mod 7, we get 1 =z = 8a
(mod 7), so a =1 (mod 7). Therefore one solution is x = 8 + 7 -5 = 43.

2. =2 (mod 5), x =3 (mod 13)
Try « = 5a + 13b. mod 5, we get 2 =z = 13b = 3b (mod 5), so b = 4 is a solution. mod 13, we get
3 =2z = 5a (mod 13) with a = 11 as a solution. Therefore one solution is 11 -5 + 4 - 13 = 107, which
is equivalent to 42 (mod 65).

3. =7 (mod 6), z =4 (mod 8)

The first equation suggests that x is odd but the second requires x to be even. No solutions.

4. £ =1 (mod 6), z =5 (mod 8)
Since ged(6,8) = 2 but both equations give = 1 (mod 2), the equations are compatible.  must be
odd, so say = 2k + 1. This leads to the equations 2k =0 (mod 6) and 2k = 4 (mod 8), and dividing
by 2 gives k =0 (mod 3) and k = 2 (mod 4), with the solution k = 6. Thus ¢ = 2k+1=2-6+1=13
is a solution (and the only solution mod 24).

5. x =8 (mod 15), x =3 (mod 10), x =1 (mod 6)
The first equation implies z = 2 (mod 3) but the second requires that « =1 (mod 3).

6. z=2 (mod 3), z=5 (mod 7), x =3 (mod 11)

Try a solution of the foom 2 =3-7-a+3-11-b+47-11-¢c. Taking the remainders mod 3, 7, and 11 in
turn gives the three equations 2 = 77¢ = 2¢ (mod 3) (soc=1),5=33-b=5-b (mod 7) (sob = 1),
and 3=21-a = —a (mod 11) (so a = -3).

One solution is therefore x = —3-214+1-33+1-77 = 47. This solution is also unique mod 3-7-11 = 231.



Decide whether the system has a solution (and if it does, find all solutions) by solving the system for each
prime factor separately.

1. n?2 =11 (mod 35)

Working over each prime factor separately gives n
(mod 5) and n = £2 (mod 7).

Finding all solutions using the Chinese Remainder Theorem would be a real pain, so we’ll go by brute
force: look at all the numbers that are +2 (mod 7) and see which ones are also 1 mod 5 (that is, end
inal,4,6,or9):

The options (mod 35) are n = 2,5,9,12,16, 19, 23,26, 30,33. Of these, the ones that work mod 5 are
9, 16, 19, and 26.

2 =1 (mod 5) and n? = 4 (mod 7), so n = £1

2. n? =12 (mod 15)

Get the equations n (mod 3) and n? = 2 (mod 5)...the second equation has no solutions, so
there are no solutions to n? = 12 (mod 15).

2:

3. n2 =15 (mod 77)

Get the equations n?> =1 (mod 7) and n? =4 (mod 11), so n = 1 mod 7 and n = £2 mod 11. Look
at the ones that work mod 11 and then filter out to see which work for 7:

The options are n = 2, 9, 13, 20, 24, 31, 35, 42, 46, 53, 57, 64, 68, 75. Of these, 13, 20, 57, and 64 are
+1 mod 7. These are the four solutions.

Note: 13 + 64 = 20 + 57 = 77, so these solutions again come in pairs. (That is, if n? = 15 (mod 77)
then (—n)? =15 (mod 77).)

4. n? =5 (mod 33)

This leads to the equation n? =2 (mod 3), which has no solutions.

Show that if p and ¢ are primes with p,q > 2. then n? =1 (mod pq) has four distinct solutions.
Use the Chinese Remainder Theorem on n = +1 (mod p), n = £1 (mod q).

Fermat’s Little Theorem
Evaluate:
1. 5199 (mod 7)
56 =1 (mod 7), s0 5! =54 = (-2) =16 =2 (mod 7).
2. 332 (mod 5)
3*=1 (mod 5) s0 332 =1 (mod 5).

3. 177 (mod 19)
17 =1 (mod 19), so 177 =17 (mod 19).



4. 8% (mod 35)

We cannot use Fermat’s Little Theorem directly, but we can solve mod 5 and mod 7 separately. 8% = 1
(mod 5), so 832 =1 (mod 5). Then 8 =1 (mod 7) so 82 =1 (mod 7).

If z=1 (mod 5) and z =1 (mod 7) then x =1 (mod 35) (1 is a solution mod 35, and by CRT is the
unique solution). Therefore 832 =1 (mod 35)
5. 820 (mod 15)
= (—1) (mod 3) s0 82° =1 (mod 3). 8% =1 (mod 5) so 82° =1 (mod 5). Putting the two together,
820 =1 (mod 15).
6. 1557 (mod 21)

15 is divisible by 3 so 1537 = 0 (mod 3). 15 is 1 mod 7 so 1537 = 1 (mod 7). Therefore 157 = 15
(mod 21).

Show that n? = —1 (mod 103) has no solutions.

FLT says that if n # 0 (mod 103) then n'?2 = 1 (mod 1)03. But if n> = —1 then n* = 1, so n'? =1
(mod 103). So n'% = nl%2 (mod 103) and so n? =1 (mod 103). Therefore there are no solutions to n? = —
(mod 103).

Use Fermat’s Little Theorem with base n = 2 to prove that 9 is not prime.
28=41=162=(-2)2=4#1 (mod 9).

Use Wilson’s Theorem to show that 7 is prime.
6!=120=119+1=17-74+1=1 (mod 7), so 7 is prime.



