Chapter 4.3: The Euclidean Algorithm
 Thursday, July 9

Prime Factorizations and gcds

1. Find the prime factorization of 210 .
2. Find the prime factorization of 10 !

3 . Find the prime factorization of 241.
4. How many zeroes does 50 ! end in?
5. Find the gcd and lcm of each of the following pairs of numbers:
(a) 13,39
(c) 180,50
(b) 24,16
(d) $2 \cdot 5 \cdot 7 \cdot 11^{2}, 2^{3} \cdot 5^{2} \cdot 11$
6. Prove: if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$ then $\operatorname{gcd}(a, b c)=1$.
7. Prove: if $p \geq 5$ then $p, p+2$, and $p+4$ cannot all be prime.
8. Prove: For every $a, \operatorname{gcd}(a, 0)=|a|$.
9. Prove: For every $a, \operatorname{gcd}(a, a)=|a|$.

Euclidean Algorithm

1. Prove the key lemma in the Euclidean algorithm: $\operatorname{gcd}(q b+r, b)=\operatorname{gcd}(r, b)$. (Hint: Let $d=\operatorname{gcd}(r, b)$ and let $e=\operatorname{gcd}(q b+r, b)$. Show that $d \leq e$ and $e \leq d$ using the definition of gcd.)
2. Use the Euclidean Algorithm to find a solution to $17 a+5 b=1$.
3. Find infinitely many solutions to $17 a+5 b=1$.
4. Use the Euclidean Algorithm to find a solution to $21 a+8 b=1$.

5 . Is there a number n such that $7 n \equiv 1(\bmod 24)$?
6 . Is there a number n such that $15 n \equiv 1(\bmod 24)$?

The Prime Property

1. Prove that 0 has the prime property (if $p \mid a b$ then $p \mid a$ or $p \mid b)$.
2. Prove that 1 has the prime property.
3. Show that if $5 \mid n$ and $7 \mid n$ then $35 \mid n$.
4. Prove that p is prime if and only if \mathbb{Z}_{p} has the following property: if $a b=0$ in \mathbb{Z}_{p}, then $a=0$ or $b=0$.
5. Given that 101 is prime, find all solutions to $x^{2} \equiv 1(\bmod 101)$.
6. Find all solutions to $x^{2} \equiv 1(\bmod 8)$.
7. Find all solutions to $x^{2}+3 x \equiv 9(\bmod 11)$.

Miscellany

1. True or False: if $a \equiv b(\bmod 24)$ then $a \equiv b(\bmod 6)$ and $a \equiv b(\bmod 4)$.
2. True or False: If $a \equiv b(\bmod 6)$ and $a \equiv b(\bmod 4)$ then $a \equiv b(\bmod 24)$.
3. Show that if $a \mid n$ and $b \mid n$ then $\operatorname{lcm}(a, b) \mid n$.
4. Show that the gap between consecutive prime numbers can be arbitrarily large. (Hint: Consider 10!. What can you say about $10!+2,10!+3, \ldots, 10!+10$?)
5. Show that if a and b are both positive integers then $\left(2^{a}-1\right)\left(\bmod 2^{b}-1\right)=2^{a \bmod b}-1$.
6. Show that if a and b are positive integers then $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{\operatorname{gcd}(a, b)}-1$.
