
Chapter 4.3: The Euclidean Algorithm
Thursday, July 9

Prime Factorizations and gcds

1. Find the prime factorization of 210.
210 = 2 · 3 · 5 · 7

2. Find the prime factorization of 10!
10! = 28 · 33 · 52 · 7

3. Find the prime factorization of 241.
241 = 241

4. How many zeroes does 50! end in?

The prime factorization of 50! includes the terms 247 and 512. Since an ending zero is a sign that the
number is divisible by 10 = 2 · 5, 50! ends in 12 zeroes.

5. Find the gcd and lcm of each of the following pairs of numbers:

(a) 13, 39

gcd(13,39) = 13, lcm(13,39) = 39

(b) 24, 16

gcd(24,16) = 8, lcm(24,16) = 48

(c) 180, 50

gcd(180,50) = 30, lcm(180,50) = 900

(d) 2 · 5 · 7 · 112, 23 · 52 · 11

gcd = 2 · 5 · 11, lcm = 23 · 52 · 7 · 112

6. Prove: if gcd(a, b) = 1 and gcd(a, c) = 1 then gcd(a, bc) = 1.

If gcd(a, b) = gcd(a, c) = 1 then there exist m,n such that am + bn = 1 and s, t such that as + ct = 1.
Multiplying the first equality by ct gives amct + bnct = ct, so as + amct + bnct = as + ct and so
a(s + mct) + bc(nt) = 1, which implies that 1 = gcd(a, bc).

Alternately: There are x and y such that bx ≡ cy ≡ 1 (mod a), so (yx)bc ≡ y(xb)c ≡ yc ≡ 1 (mod a).
Since bc has a multiplicative inverse mod a, gcd(a, bc) = 1.

7. Prove: if p ≥ 5 then p, p + 2, and p + 4 cannot all be prime.

At least one of the three terms must be divisible by 3: if p = 3n then p is divisible by 3, if p = 3n + 1
then 3|p + 2, and if p = 3n + 2 then 3|p + 4. Since p ≥ 5 the term divisible by 3 must be composite.

8. Prove: For every a, gcd(a, 0) = |a|.
a|a and −a|a for any a, and a|0 for any a, so |a| is a common divisor of a and 0. It must be the largest
since if d|a then |d| ≤ |a|.

9. Prove: For every a, gcd(a, a) = |a|.
|a| is a commond divisor. It must be the largest since if d|a then |d| ≤ |a|.
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Euclidean Algorithm

1. Prove the key lemma in the Euclidean algorithm: gcd(qb + r, b) = gcd(r, b). (Hint: Let d = gcd(r, b)
and let e = gcd(qb + r, b). Show that d ≤ e and e ≤ d using the definition of gcd.)

Let d = gcd(qb + r, b) and let e = gcd(r, b). Since d|(qb + r) and d|b it follows that d|r. This means
that d is a common divisor of r and b, so d ≤ e since e is by definition the greatest common divisor of
r and b.

Similarly, e|r and e|b, so e|(qb+ r). e is therefore a common divisor of qb+ r and b, meaning that e ≤ d
(since d is the greatest common divisor of qb + r and b).

2. Use the Euclidean Algorithm to find a solution to 17a + 5b = 1.

17 = 3 · 5 + 2

5 = 2 · 2 + 1

5− 2 · 2 = 1

17− 3 · 5 = 2

5− 2 · (17− 3 · 5) = 1

7 · 5− 2 · 17 = 1

3. Find infinitely many solutions to 17a + 5b = 1.

Use the fact that 17 · (−5k) + 5 · (−17k) = 0 for any k.

4. Use the Euclidean Algorithm to find a solution to 21a + 8b = 1.

21− 2 · 8 = 5

8− 5 = 3

5− 3 = 2

3− 2 = 1

3− (5− 3) = 1

2 · 3− 5 = 1

2 · (8− 5)− 5 = 1

2 · 8− 3 · 5 = 1

2 · 8− 3 · (21− 2 · 8) = 1

8 · 8− 3 · 21 = 1

5. Is there a number n such that 7n ≡ 1 (mod 24)?

Yup. . . 7 · 7 = 49 ≡ 1 (mod 24).

6. Is there a number n such that 15n ≡ 1 (mod 24)?

No, since 3 = gcd(15, 24) but 1 is not divisible by 3.
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The Prime Property

1. Prove that 0 has the prime property (if p|ab then p|a or p|b).
If 0|ab then ab = 0, so a = 0 or b = 0, so 0|a or 0|b.

2. Prove that 1 has the prime property.

Trivially, since 1|a for any a.

3. Show that if 5|n and 7|n then 35|n.

Let n = 5k and n = 7j. Then 5k = 7j, so (since 5 has the prime property) 5|j. We can then write
j = 5m, so n = 7j = 7 · 5m = 35m for some m, meaning 35|n.

4. Prove that p ≥ 2 is prime if and only if Zp has the following property: if ab = 0 in Zp, then a = 0 or
b = 0.

Written in terms of modular arithmetic, this is the same as the prime property: if p|ab then p|a or p|b.
Proof that all primes have the prime property: Say that p|ab. If p|a then we are done. If p - a then
gcd(a, p) = 1, so p|b.
Proof that composite numbers do not have the prime property: If m is composite then m = nc for
some n, c ≥ 2. Then m|nc but m - n and m - c.

5. Given that 101 is prime, find all solutions to x2 ≡ 1 (mod 101).

If x2 ≡ 1 (mod 101) then (x + 1)(x − 1) = x2 − 1 ≡ 0 (mod 101), so by the above result (x + 1) ≡ 0
(mod 101) or x− 1 ≡ 0 (mod 101). Therefore, x ≡ ±1 (mod 101).

We can then check that both of these solutions work.

6. Find all solutions to x2 ≡ 1 (mod 8).

1,3,5,7 are all solutions.

7. Find all solutions to x2 + 3x ≡ 9 (mod 11).

If x2 + 3x ≡ 9 (mod 11) then adding 2 to both sides gives (x + 1)(x + 2) = x2 + 3x + 2 ≡ 0 (mod 11).
Since 11 is prime, this means that x ≡ −1 (mod 11) or x ≡ −2 (mod 11).

So the only two solutions with 0 ≤ x < 11 are x = 9 and x = 10.

Miscellany

1. True or False: if a ≡ b (mod 24) then a ≡ b (mod 6) and a ≡ b (mod 4).

True. If a = b + 24k then a = b + 4 · (6k) = b + 6 · (4k).

2. True or False: If a ≡ b (mod 6) and a ≡ b (mod 4) then a ≡ b (mod 24).

False: a = 0, b = 12 is a counterexample.

3. Show that if a|n and b|n then lcm(a, b)|n.

Let l = lcm(a, b). Proof by contradiction: Suppose l - n. Then we can use the Division Algorithm to
write n = ql+ r with 0 ≤ r < l. But since a|n and a|l, it follows that a|r, and similarly b|r. This would
mean that r is a common multiple of a and b that is smaller than l. . . a contratiction.

Therefore our assumption that l - n was incorrect.

4. Show that the gap between consecutive prime numbers can be arbitrarily large. (Hint: Consider 10!.
What can you say about 10! + 2, 10! + 3, . . . , 10! + 10?)

Since n! = 1 · 2 · . . . · n, for any 2 ≤ k ≤ n, k|(n! + k), so there are (n− 1) composite numbers in a row
after n!.
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5. Show that if a and b are both positive integers then (2a − 1) (mod 2b − 1) = 2a mod b − 1.

Use the fact that by the factorization of xn − 1 in general, 2nk − 1 is divisible by 2k − 1 for any n.

Let a = qb + r, so that r = a mod b. Then

2a − 1 = 2qb+r − 1

= 2qb · 2r − 2r + 2r − 1

= 2r(2qb − 1) + 2r − 1

≡ 2r − 1 (mod b)

6. Show that if a and b are positive integers then gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

Comes from using the Euclidean algorithm on 2a−1 and 2b−1 and combining with the previous result.
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