# Chapter 4.3: The Euclidean Algorithm <br> Thursday, July 9 

## Prime Factorizations and gcds

1. Find the prime factorization of 210 .

$$
210=2 \cdot 3 \cdot 5 \cdot 7
$$

2. Find the prime factorization of 10 !

$$
10!=2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7
$$

3. Find the prime factorization of 241 .

$$
241=241
$$

4. How many zeroes does 50 ! end in?

The prime factorization of 50 ! includes the terms $2^{4} 7$ and $5^{1} 2$. Since an ending zero is a sign that the number is divisible by $10=2 \cdot 5,50$ ! ends in 12 zeroes.
5. Find the gcd and lcm of each of the following pairs of numbers:
(a) 13,39
$\operatorname{gcd}(13,39)=13, \operatorname{lcm}(13,39)=39$
(b) 24,16
$\operatorname{gcd}(24,16)=8, \operatorname{lcm}(24,16)=48$
(c) 180,50
$\operatorname{gcd}(180,50)=30, \operatorname{lcm}(180,50)=900$
(d) $2 \cdot 5 \cdot 7 \cdot 11^{2}, 2^{3} \cdot 5^{2} \cdot 11$
$\operatorname{gcd}=2 \cdot 5 \cdot 11, \mathrm{lcm}=2^{3} \cdot 5^{2} \cdot 7 \cdot 11^{2}$
6. Prove: if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$ then $\operatorname{gcd}(a, b c)=1$.

If $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=1$ then there exist $m, n$ such that $a m+b n=1$ and $s, t$ such that $a s+c t=1$. Multiplying the first equality by $c t$ gives $a m c t+b n c t=c t$, so $a s+a m c t+b n c t=a s+c t$ and so $a(s+m c t)+b c(n t)=1$, which implies that $1=\operatorname{gcd}(a, b c)$.
Alternately: There are $x$ and $y$ such that $b x \equiv c y \equiv 1(\bmod a)$, so $(y x) b c \equiv y(x b) c \equiv y c \equiv 1(\bmod a)$. Since $b c$ has a multiplicative inverse $\bmod \mathrm{a}, \operatorname{gcd}(a, b c)=1$.
7. Prove: if $p \geq 5$ then $p, p+2$, and $p+4$ cannot all be prime.

At least one of the three terms must be divisible by 3 : if $p=3 n$ then $p$ is divisible by 3 , if $p=3 n+1$ then $3 \mid p+2$, and if $p=3 n+2$ then $3 \mid p+4$. Since $p \geq 5$ the term divisible by 3 must be composite.
8. Prove: For every $a, \operatorname{gcd}(a, 0)=|a|$.
$a \mid a$ and $-a \mid a$ for any $a$, and $a \mid 0$ for any $a$, so $|a|$ is a common divisor of $a$ and 0 . It must be the largest since if $d \mid a$ then $|d| \leq|a|$.
9. Prove: For every $a, \operatorname{gcd}(a, a)=|a|$.
$|a|$ is a commond divisor. It must be the largest since if $d \mid a$ then $|d| \leq|a|$.

## Euclidean Algorithm

1. Prove the key lemma in the Euclidean algorithm: $\operatorname{gcd}(q b+r, b)=\operatorname{gcd}(r, b)$. (Hint: Let $d=\operatorname{gcd}(r, b)$ and let $e=\operatorname{gcd}(q b+r, b)$. Show that $d \leq e$ and $e \leq d$ using the definition of gcd.)
Let $d=\operatorname{gcd}(q b+r, b)$ and let $e=\operatorname{gcd}(r, b)$. Since $d \mid(q b+r)$ and $d \mid b$ it follows that $d \mid r$. This means that d is a common divisor of $r$ and $b$, so $d \leq e$ since $e$ is by definition the greatest common divisor of $r$ and $b$.
Similarly, $e \mid r$ and $e \mid b$, so $e \mid(q b+r)$. $e$ is therefore a common divisor of $q b+r$ and $b$, meaning that $e \leq d$ (since d is the greatest common divisor of $q b+r$ and $b$ ).
2. Use the Euclidean Algorithm to find a solution to $17 a+5 b=1$.

$$
\begin{aligned}
17 & =3 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
5-2 \cdot 2 & =1 \\
17-3 \cdot 5 & =2 \\
5-2 \cdot(17-3 \cdot 5) & =1 \\
7 \cdot 5-2 \cdot 17 & =1
\end{aligned}
$$

3. Find infinitely many solutions to $17 a+5 b=1$.

Use the fact that $17 \cdot(-5 k)+5 \cdot(-17 k)=0$ for any $k$.
4. Use the Euclidean Algorithm to find a solution to $21 a+8 b=1$.

$$
\begin{aligned}
21-2 \cdot 8 & =5 \\
8-5 & =3 \\
5-3 & =2 \\
3-2 & =1 \\
3-(5-3) & =1 \\
2 \cdot 3-5 & =1 \\
2 \cdot(8-5)-5 & =1 \\
2 \cdot 8-3 \cdot 5 & =1 \\
2 \cdot 8-3 \cdot(21-2 \cdot 8) & =1 \\
8 \cdot 8-3 \cdot 21 & =1
\end{aligned}
$$

5. Is there a number $n$ such that $7 n \equiv 1(\bmod 24)$ ?

Yup. . $7 \cdot 7=49 \equiv 1(\bmod 24)$.
6 . Is there a number $n$ such that $15 n \equiv 1(\bmod 24)$ ?
No, since $3=\operatorname{gcd}(15,24)$ but 1 is not divisible by 3 .

## The Prime Property

1. Prove that 0 has the prime property (if $p \mid a b$ then $p \mid a$ or $p \mid b$ ).

If $0 \mid a b$ then $a b=0$, so $a=0$ or $b=0$, so $0 \mid a$ or $0 \mid b$.
2. Prove that 1 has the prime property.

Trivially, since $1 \mid a$ for any $a$.
3. Show that if $5 \mid n$ and $7 \mid n$ then $35 \mid n$.

Let $n=5 k$ and $n=7 j$. Then $5 k=7 j$, so (since 5 has the prime property) $5 \mid j$. We can then write $j=5 m$, so $n=7 j=7 \cdot 5 m=35 m$ for some $m$, meaning $35 \mid n$.
4. Prove that $p \geq 2$ is prime if and only if $\mathbb{Z}_{p}$ has the following property: if $a b=0$ in $\mathbb{Z}_{p}$, then $a=0$ or $b=0$.

Written in terms of modular arithmetic, this is the same as the prime property: if $p \mid a b$ then $p \mid a$ or $p \mid b$. Proof that all primes have the prime property: Say that $p \mid a b$. If $p \mid a$ then we are done. If $p \nmid a$ then $\operatorname{gcd}(a, p)=1$, so $p \mid b$.
Proof that composite numbers do not have the prime property: If $m$ is composite then $m=n c$ for some $n, c \geq 2$. Then $m \mid n c$ but $m \nmid n$ and $m \nmid c$.
5. Given that 101 is prime, find all solutions to $x^{2} \equiv 1(\bmod 101)$.

If $x^{2} \equiv 1(\bmod 101)$ then $(x+1)(x-1)=x^{2}-1 \equiv 0(\bmod 101)$, so by the above result $(x+1) \equiv 0$ $(\bmod 101)$ or $x-1 \equiv 0(\bmod 101)$. Therefore, $x \equiv \pm 1(\bmod 101)$.
We can then check that both of these solutions work.
6. Find all solutions to $x^{2} \equiv 1(\bmod 8)$.
$1,3,5,7$ are all solutions.
7. Find all solutions to $x^{2}+3 x \equiv 9(\bmod 11)$.

If $x^{2}+3 x \equiv 9(\bmod 11)$ then adding 2 to both sides gives $(x+1)(x+2)=x^{2}+3 x+2 \equiv 0(\bmod 11)$. Since 11 is prime, this means that $x \equiv-1(\bmod 11)$ or $x \equiv-2(\bmod 11)$.
So the only two solutions with $0 \leq x<11$ are $x=9$ and $x=10$.

## Miscellany

1. True or False: if $a \equiv b(\bmod 24)$ then $a \equiv b(\bmod 6)$ and $a \equiv b(\bmod 4)$.

True. If $a=b+24 k$ then $a=b+4 \cdot(6 k)=b+6 \cdot(4 k)$.
2. True or False: If $a \equiv b(\bmod 6)$ and $a \equiv b(\bmod 4)$ then $a \equiv b(\bmod 24)$.

False: $a=0, b=12$ is a counterexample.
3. Show that if $a \mid n$ and $b \mid n$ then $l c m(a, b) \mid n$.

Let $l=l c m(a, b)$. Proof by contradiction: Suppose $l \nmid n$. Then we can use the Division Algorithm to write $n=q l+r$ with $0 \leq r<l$. But since $a \mid n$ and $a \mid l$, it follows that $a \mid r$, and similarly $b \mid r$. This would mean that $r$ is a common multiple of $a$ and $b$ that is smaller than $l \ldots$ a contratiction.
Therefore our assumption that $l \nmid n$ was incorrect.
4. Show that the gap between consecutive prime numbers can be arbitrarily large. (Hint: Consider 10!. What can you say about $10!+2,10!+3, \ldots, 10!+10$ ?)
Since $n!=1 \cdot 2 \cdot \ldots \cdot n$, for any $2 \leq k \leq n, k \mid(n!+k)$, so there are $(n-1)$ composite numbers in a row after $n$ !.
5. Show that if $a$ and $b$ are both positive integers then $\left(2^{a}-1\right)\left(\bmod 2^{b}-1\right)=2^{a \bmod b}-1$.

Use the fact that by the factorization of $x^{n}-1$ in general, $2^{n k}-1$ is divisible by $2^{k}-1$ for any $n$. Let $a=q b+r$, so that $r=a \bmod \mathrm{~b}$. Then

$$
\begin{aligned}
2^{a}-1 & =2^{q b+r}-1 \\
& =2^{q b} \cdot 2^{r}-2^{r}+2^{r}-1 \\
& =2^{r}\left(2^{q b}-1\right)+2^{r}-1 \\
& \equiv 2^{r}-1 \quad(\bmod b)
\end{aligned}
$$

6. Show that if $a$ and $b$ are positive integers then $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{\operatorname{gcd}(a, b)}-1$.

Comes from using the Euclidean algorithm on $2^{a}-1$ and $2^{b}-1$ and combining with the previous result.

