Chapter 4.1: Modular Arithmetic
 Wednesday, July 8

Divisibility Recap

1. Using the fact that 1 is the smallest positive integer, prove that if $a \mid b$ then $|a| \leq|b|$.
2. Prove that if $a \mid b$ and $b \mid a$ then $|a|=|b|$ (or, $a= \pm b$).

Modular Arithmetic

Evaluate the following:

1. $44(\bmod 3)$
2. $171(\bmod 12)$
3. $-26(\bmod 5)$
4. $199^{2}(\bmod 5)$
5. $(2301(\bmod 3))^{2}(\bmod 5)$
6. $23^{88}(\bmod 2)$
7. $2^{100}(\bmod 10)$
8. $2737 \cdot 8184(\bmod 9)$
9. $2^{64}(\bmod 13)$
10. $88^{5}(\bmod 90)$
11. $97 \cdot 85(\bmod 100)$
12. $155 \cdot 822(\bmod 10)$

Squares

1. Prove that an integer a is divisible by 5 if and only if a^{2} is divisible by 5 (proof by cases).
2. Prove that an integer a^{2} is divisible by 3 if and only if it divisible by 9 .
3. Prove that 98765432 is not a perfect square.
4. Using the fact that $n^{2} \equiv 0$ or $n^{2} \equiv 1(\bmod 4)$, prove that 111111 cannot be written as the sum of any two square numbers (what are the possibilities for $\left.a^{2}+b^{2}(\bmod 4) ?\right)$

Method of Nines

1. Use the Method of Nines to show that $35121 \cdot 87122 \neq 3059911762$.
2. Find an example of an error in a multiplication problem that the Method of Nines fails to Catch.

The Trouble With Division in \mathbb{Z}_{m}

1. Suppose that $4 a \equiv 4 b(\bmod 16)$? What is the most you can say about a and b ?
2. Suppose that $7 a \equiv 7 b(\bmod 16)$? What is the most you can say about a and b ?
3. A number $a \in \mathbb{Z}_{m}$ is called a zero divisor if there is some non-zero $b \in \mathbb{Z}_{m}$ such that $a b=0$. Prove: if $a \mid m$ then a is a zero divisor in \mathbb{Z}_{m}.
4. Prove that if a is a zero divisor and b is any number, then $a b$ is a zero divisor.
5. Prove that if there is some $d>1$ such that $d \mid a$ and $d \mid m$, then a is a zero divisor in \mathbb{Z}_{m}.
6. A number $a \in \mathbb{Z}_{m}$ is called a unit if there is some $b \in \mathbb{Z}_{m}$ such that $a b=1$. Prove: the product of two units is a unit.
7. Prove that no number can be both a unit and a zero divisor.
8. (Harder) Prove that every number is \mathbb{Z}_{m} is either a zero divisor or a unit.
9. What are the zero divisors in \mathbb{Z} ? What are the units? What numbers are neither?
10. For what values of m is every non-zero $a \in \mathbb{Z}_{m}$ a unit?
